




Materials and Methods
Data sets

All microarray data and immune cell groups were described in a previous
study (14). The 619 samples (Dataset 1) of human CD4+ T cells in the
ImmuSort database (http://immusort.bjmu.edu.cn or http://immu.tipsci.
com/Account/) were used. To improve reliability by cross-validation, six
additional data sets were prepared. Dataset 2 (816 samples) was a newly
updated version of Dataset 1, which contained all available human CD4+

T cell samples included in the Gene Expression Omnibus database as of
December 20, 2015 (16). Dataset 3 (361 samples) and Dataset 4 (470
samples) were derived from healthy individuals in Datasets 1 and 2, re-
spectively. Dataset 5 (346 samples) contained all samples derived from
patients and several samples without disease information in Dataset 2,
including patients with various cancers, systemic lupus erythematosus,
rheumatoid arthritis, and asthma. Dataset 6 (474 samples) and Dataset 7
(658 samples) were taken from Datasets 1 and 2, respectively, but the
samples from patients with hematologic system diseases and lymphomas
were removed. Several T cell clones, lymph node samples, and trans-
formed cell lines identified during reanalysis of the sample sources were
also discarded from Datasets 6 and 7. All samples are listed in Supplemental
Table I.

Enrichment analysis

Enrichment analysis is a high-throughput strategy that increases the like-
lihood that investigators can identify the biological processes most pertinent
to their study. Enrichment can be quantitatively measured with many
statistical methods (17) to determine whether certain biological processes,
such as gene annotations from gene ontology (GO) (18), or pathways, such
as Kyoto Encyclopedia of Genes and Genomes (KEGG) (19), are enriched
in the relevant gene sets identified in the user’s study. Functional anno-
tations concerning the GO terms and KEGG pathways were downloaded
from the DAVID database (version 6.7) (20). The Fisher exact test was
adopted. The p values were adjusted using the R function “p.adjust” with
the Bonferroni correction (“bonferroni”), in which the p values were
multiplied by the number of comparisons. Annotation terms with
Bonferroni-corrected p values # 0.05 were considered statistically sig-
nificant and were used for further analysis.

Mutual repulsion rate

For our array platform, a probe set was flagged absent if the relevant transcript
was not considered to be expressed. Otherwise, the probe set was flagged as
present for expression or as marginally present if the expression could not be
determined. The mutual repulsion rate or absent-present and present-absent
rate (APA rate) meant that one of the genes in any two-gene combination
(gene pair) at the probe set level was expressed in one sample (present), but
the other gene was not expressed in the same sample (absent), or vice versa
(absent-present). The APA rate was calculated by dividing the sample counts
of the absent-present and the present-absent states by the total sample count.

Electronic sorting analysis

During electronic sorting, the expressional intensity of the genes was re-
flected by the rank score (14). For each highly plastic gene (label gene), the

samples were first sorted based on rank score, and three rounds of elec-
tronic sorting were performed based on the quantile values (Q1, Q2, and
Q3, respectively) (Fig. 1). During each round, the samples were divided
into two groups (or virtual subpopulations). The difference (i.e., d value) in
the average rank score (ARS) for each gene at the probe set level in both
subpopulations was calculated using the ARS in the high-expression
subpopulation subtracted from that in the low-expression subpopulation.
Thus, each round produced a gene list of 41,477 probe sets with unique
annotation. After three rounds of sorting, three gene lists (List1, List2, and
List3) were produced and used for further identification of differentially
expressed genes (DEGs).

For upregulated (or downregulated) candidate DEGs, genes with deltas
greater (or less) than 10 (or 210) in any two of the primary gene lists
(List1, List2, and List3) were identified. These candidates were further
filtered by a threshold of the Pearson correlation coefficient (r $ +0.5) for
upregulated DEGs and by a mutual repulsion rate $ 0.7 for downregulated
DEGs. Datasets 2 through 7 were also analyzed for cross-validation. The
final DEGS were obtained when they were supported by at least four
datasets during cross-validation and used for further enrichment analysis.

Correlation analysis

The expressional correlation analysis and present-present (PP) rate cal-
culation were described previously by using the ImmuCo data set (15). The
Pearson’s r was calculated by using the signal values in human CD4+

T cells.

Plots and statistics

R (http://www.r-project.org/) language and the software environment were
used for statistical computing and graphical displays of all data. The
network analysis was performed using Cytoscape software (http://www.
cytoscape.org/) (21).

Results
Identification of highly plastic genes

High plasticity indicates that a gene easily changes its expression
under various experimental conditions (14). In this study, we
performed a systematic analysis of GPL scores and found that the
average scores of all genes in human and mouse immune cells
were 15.07 and 15.37, respectively. We identified genes with GPL
scores$ 45 (three times greater than average) as extremely plastic
genes and those with GPL scores # 5 (one third of the average
GPL score) as extremely low plasticicity genes. In total, 1379
human and 883 mouse genes were identified to be extremely plastic
(Supplemental Table II). Moreover, 10,889 and 7,655 extremely
low plasticicity genes were identified (Supplemental Table II).
These two gene sets were used for functional enrichment analysis.
As shown in Table I and Supplemental Table III, the molecular

functions relevant to cytokine activity, chemokine activity, or
chemokine receptor binding were highly enriched in the highly

FIGURE 1. The electronic sorting process used in

this analysis. See Materials and Methods for details.
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plastic gene set. The biological processes relevant to the immune
system, immune response, response to external stimulus, defense
response, and inflammatory response were also highly enriched. A
further analysis revealed that cytokines, including chemokines,
constituted an important gene set in the highly plastic genes. This
finding was confirmed by KEGG pathway analysis (Table I,
Supplemental Table III). Moreover, our results also showed that
highly plastic genes were mainly derived from moderately
expressed genes (Supplemental Figs. 1, 2), which suggests that
moderately expressed genes should play important roles in con-
tribution to the phenotypic heterogeneity of immune cells.
Unlike the highly plastic genes, low plasticicity genes were

generally associated with cellular metabolic processes, protein
transport and localization, cell cycles, or RNA processing. Their
molecular functions were primarily related to protein binding,
catalytic activity, nucleotide binding, or transferase activity
(Supplemental Table III). Therefore, low plasticicity genes should
play important roles in basic cell life processes, performing
functions akin to housekeeping (22). Moreover, immune cell
lineage-specific biomarkers were expected to be found among the

genes with low plasticity on the basis of our previous study
(Supplemental Fig. 3) (14). Similar results were observed for
mouse samples (Table I, Supplemental Table III). Therefore, our
results suggested that genes with high plasticity play more im-
portant roles in immune responses than do low plasticity genes.
Genes with high plasticity indicated the presence of certain

conditions that generated the high and low (or no) expression states
of these genes. This suggested that highly plastic genes as label
genes could be suitable to mark immune cell subpopulations, as
well as that potentially novel immune cell subpopulations could
be discovered through GPL analysis (see “Discussion” and
Supplemental Table IV). Moreover, through electronic sorting of
immune cell samples with different expression intensities of a
highly plastic gene, the tightly coexpressed genes could be iden-
tified and further used to evaluate the function of the potential
immune cell subpopulation.

Electronic sorting of FOXP3hiCD4+ T cells

The electronic sorting process is shown in Fig. 1. FOXP3, a
characteristic transcription factor of Tregs, was found to be highly

Table I. Functional enrichment analysis of genes with GPL scores $ 45

Category Species ID Name p Value

GO: molecular function Human GO:0005125 Cytokine activity 4.13E216
GO:0008009 Chemokine activity 2.63E212
GO:0042379 Chemokine receptor binding 7.03E212
GO:0001664 G-protein-coupled receptor binding 1.47E210
GO:0005102 Receptor binding 2.77E210
GO:0019955 Cytokine binding 1.28E208
GO:0060089 Molecular transducer activity 5.44E206
GO:0004871 Signal transducer activity 5.44E206
GO:0004950 Chemokine receptor activity 3.55E205
GO:0001871 Pattern binding 3.64E205

Mouse GO:0030246 Carbohydrate binding 6.16E215
GO:0001871 Pattern binding 9.65E212
GO:0030247 Polysaccharide binding 9.65E212
GO:0005125 Cytokine activity 3.66E211
GO:0008009 Chemokine activity 1.20E210
GO:0042379 Chemokine receptor binding 1.51E210
GO:0005102 Receptor binding 2.49E210
GO:0005539 Glycosaminoglycan binding 5.62E210
GO:0001664 G protein–coupled receptor binding 2.06E209
GO:0019838 Growth factor binding 1.72E207

GO: biological process Human GO:0002376 Immune system process 2.46E225
GO:0006955 Immune response 1.09E223
GO:0009605 Response to external stimulus 1.72E219
GO:0009611 Response to wounding 1.80E216
GO:0006952 Defense response 3.86E216
GO:0006935 Chemotaxis 1.42E215
GO:0042330 Taxis 1.42E215
GO:0040011 Locomotion 5.61E215
GO:0006954 Inflammatory response 3.53E214
GO:0048731 System development 6.55E214

Mouse GO:0006955 Immune response 2.35E222
GO:0002376 Immune system process 1.01E221
GO:0009605 Response to external stimulus 1.71E221
GO:0050896 Response to stimulus 1.63E220
GO:0006952 Defense response 2.15E217
GO:0009611 Response to wounding 9.96E217
GO:0006954 Inflammatory response 1.27E216
GO:0006950 Response to stress 1.50E213
GO:0048518 Positive regulation of biological process 8.23E212
GO:0048522 Positive regulation of cellular process 1.96E211

KEGG pathway Human hsa04060 Cytokine-cytokine receptor interaction 9.84E220
hsa04640 Hematopoietic cell lineage 2.08E210
hsa04062 Chemokine signaling pathway 3.85E207

Mouse mmu04060 Cytokine-cytokine receptor interaction 1.99E216
mmu04640 Hematopoietic cell lineage 3.62E208
mmu04512 ECM-receptor interaction 1.03E205

For more information, see Supplemental Table III.
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plastic, with a GPL score of 33.5 (Supplemental Table IV), which
made it excellent for sorting FOXP3hiCD4+ T cells. The three gene
lists used during the sorting process are shown in Supplemental
Table V. After cross-validation using additional data sets, a total
of 20 upregulated and 19 downregulated genes was identified at the
probe set level under our strict filter conditions (Table II).
Among the upregulated genes, IL2RA (also known as CD25) is a

well-known cell surface marker of Tregs. CTLA4 is an important
inhibitory molecule that mediates the function of Tregs (23). DUSP4 is
also one of the signature molecules of Tregs (24). LRRC32, also
known as GARP, was identified as a Treg-specific activation marker
and was specifically induced in CD4+CD25hiFOXP3hi Tregs (25–28).
GAPR can bind latent TGF-b1 on the Treg surface, and it can
stimulate Tregs to release mature TGF-b1 from the GARP-latent
TGF-b1 complex. LAPTM4B plays a number of oncogenic roles,
and high levels of this protein are associated with poor prognosis in
many types of cancers. LAPTM4B was recently identified as binding
to GARP and serving as a negative regulator for TGF-b1 production
in human Tregs (29). Tregs also express high levels of FAS molecules
(Fas cell surface death receptor, also known as APO-1/CD95), which
play an important role in CD95L-mediated apoptosis (30). CD80 (also
known as B7-1) is a costimulatory molecule that can be expressed on
activated T cells, but the costimulatory activity produced by CD80
expressed by APCs has been the major focus of research. CD80 on
Tregs may transduce an inhibitory signal into T cells (31).

Our results showed that most of the upregulated genes in FOXP3hi

CD4+ T cells were actually verified in Tregs. These genes were
significantly upregulated in Tregs according to their ARSs
(Table II). Our results revealed that genes with functional impor-
tance in Tregs could be successfully identified by electronic sorting
(even if the key surface marker was IL2RA/CD25) and that the
process was actually independent of Treg samples. In addition, our
results revealed some novel genes in the Tregs’ functions. These
genes included SLCO4A1, PMCH, FAM126A, and ASB2(ankyrin
repeat and SOCS box-containing 2). The functional associations
between these genes and Tregs have not been established.
During the identification of downregulated genes, the Pearson’s r

value was not particularly powerful, because with the increase in
negative correlation strength (i.e., the increase of the absolute r
value), the correlated genes tended to be coexpressed (or coexist)
in the same cells (Fig. 2). To solve this problem, a mutual re-
pulsion rate (or APA rate) was introduced. Generally, a high APA
rate indicated low correlation (Fig. 2). As shown in Table II, most
downregulated genes in FOXP3hiCD4+ T cells were rare in Tregs’
functions. Among these genes, ADRB2 (also known as B2AR) was
recently reported to be downregulated in Tregs (32).
Significant enrichments were observed only in the upregulated

gene set. The results revealed that the functions of FOXP3hiCD4+

T cells were primarily associated with regulatory roles in the
immune system, especially negative regulations, such as negative

Table II. DEGs between FOXP3hi and FOXP3lo/2 CD4+ T cells

Probe Set Symbol Gene ID Average D r APA Rate ARS (Treg) ARS (CD4T) Da p Valueb

219911_s_at SLCO4A1 28231 24.02 0.61 71.18 51.89 19.29 4.13E209
206942_s_at PMCH 5367 23.72 0.52 88.21 43.55 44.66 1.12E229
211269_s_at IL2RA 3559 21.85 0.52 95.18 74.56 20.62 1.10E220
223625_at FAM126A 84668 19.42 0.54 68.33 51.15 17.18 6.93E210
206341_at IL2RA 3559 18.77 0.51 93.04 73.79 19.25 3.05E220
233857_s_at ASB2 51676 16.87 0.56 59.71 47.77 11.94 3.16E204
234964_at TRD@ 6964 16.55 0.58 63.19 50.66 12.53 5.49E205
1558920_at LOC100128590 100128590 16.08 0.61 61.83 32.35 29.48 2.08E211
227915_at ASB2 51676 15.82 0.55 69.9 51.95 17.95 1.05E208
204015_s_at DUSP4 1846 15.52 0.56 91.75 72.07 19.68 6.74E218
221331_x_at CTLA4 1493 15.29 0.59 92.03 74.95 17.08 2.65E222
234362_s_at CTLA4 1493 15.11 0.60 92.46 75.48 16.98 2.54E221
1554679_a_at LAPTM4B 55353 15.04 0.54 67.81 61.89 5.92 1.55E202
244620_at LOC100128590 100128590 14.89 0.63 49.72 20.26 29.46 2.56E207
231794_at CTLA4 1493 13.79 0.59 91.97 72.11 19.86 2.23E228
208767_s_at LAPTM4B 55353 13.24 0.56 80.76 73.47 7.29 2.69E205
216252_x_at FAS 355 12.17 0.63 86.53 74.81 11.72 2.07E209
1554519_at CD80 941 11.72 0.51 74.61 54.01 20.6 2.12E213
215719_x_at FAS 355 11.56 0.62 90.42 79.1 11.32 1.11E209
203835_at LRRC32 2615 11.35 0.69 84.93 40.91 44.02 1.61E234
1564139_at LOC144571 144571 223.73 0.71506 55.33 66.23 210.9 1.87E205
1558569_at LOC100131541 100131541 220.03 0.72051 61.6 76.58 214.98 2.27E204
1557239_at BBX 56987 219.04 0.70236 55.4 59.64 24.24 4.40E201
236966_at ARMC8 25852 218.02 0.70417 65.75 72.21 26.46 9.87E202
229457_at ANKHD1 54882 217.09 0.70054 76.56 72.23 4.33 7.24E202
215754_at SCARB2 950 216.65 0.70417 60.86 66.53 25.67 1.92E204
226344_at ZMAT1 84460 216.31 0.71143 65.49 76.75 211.26 4.30E208
230707_at SORL1 6653 215.24 0.70054 77.74 79.29 21.55 3.49E201
236583_at GIMAP1 170575 215.23 0.70599 73.24 81.22 27.98 2.01E202
239005_at FLJ39739 388685 215.07 0.72777 59.11 77.09 217.98 2.52E210
232346_at LOC388692 388692 215.01 0.70962 58.72 72.33 213.61 3.74E209
1556472_s_at SCML4 256380 214.83 0.7078 47.79 71.61 223.82 1.12E215
238851_at ANKRD13A 88455 214.77 0.70417 56.58 63.35 26.77 4.44E203
206170_at ADRB2 154 214.75 0.71143 40.44 64.2 223.76 3.48E217
229141_at WDR33 55339 214.25 0.74229 70.54 77.88 27.34 7.32E206
236166_at LOC285147 285147 213.99 0.71143 60.72 61.18 20.46 9.41E201
1554638_at ZFYVE16 9765 213.09 0.71143 52.68 57.32 24.64 2.62E202
1559658_at C15orf29 79768 212.38 0.71869 48.6 57.99 29.39 2.73E205
228708_at RAB27B 5874 211.66 0.7078 42.39 73.18 230.79 1.15E227

aD, Difference in ARSs between Tregs and CD4+ T cells.
bFor the difference between two ARSs; calculated using the Wilcoxon rank-sum test.
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regulation of lymphocyte activation (Table III). This finding
agreed well with current knowledge about the regulatory roles of
Tregs. These results suggested that electronic sorting could also be
used for functional evaluation.

Electronic sorting of cytokine-producing CD4+ T cells

Some cytokines with a high level of plasticity (Supplemental
Table IV) were used previously to label Th cell subpopulations.
These molecules are actually characteristic cytokines for Th1 cells
(IFNG), Th2 cells (IL-4, IL-5, IL-13), Th17 cells (IL-17A, IL-17F,
IL-22, IL-26), Th9 cells (IL-9), Th22 cells (IL-22), Tfh cells
(IL-4, IL-21), and Tregs (IL-10, TGFB1) (8). We continued to sort
these cytokine-producing CD4+ T cells. In this analysis, the
cytokine-producing CD4+ T cells were not fully equivalent to the
corresponding Th cells, especially with regard to the unspecific
cytokines produced by multiple Th subsets, such as IL-10, which
can be produced by Th2 cells, Th9 cells, Th17 cells, and Tregs (9).
The complete results are shown in Supplemental Table V. We
listed some key examples, as follows.
IL-12 is a dominant factor driving the development of Th1 cells

and in the induction of IFN-g. During Th1 cell development, the
key transcription factor TBX21 responds to the initial TCR acti-
vation and promotes expression of IL-12R b2 chain (IL12RB2),
which results in greater IL-12 responsiveness and further pro-
duction of IFN-g (33). In accordance with this pattern, IL12RB2 was
observed to be upregulated in IFNGhiCD4+ T cells (Supplemental
Table V). In addition, Th1 cytokines, such as TNF, LTA, and CSF2,
also known as GM-CSF, were observed in the upregulated gene set.
IL-4, IL-5, and IL-13 are Th2 cytokines; according to our results,

they were tightly coexpressed in CD4+ T cells. For example, both
IL-5 and IL-13 occurred in the upregulated gene set of IL4hiCD4+

T cells. Other cytokines, such as IL-3, IL-10, IL-21 (34), CSF2,
LIF, and TNF (35), along with some transcription factors, such as
IRF4 (36), NFATC1 (37), SOCS2 (38), and GFI1 (39, 40), were
also upregulated in IL4hiCD4+ T cells. These molecules play
important roles in the development and/or functions of Th2 cells.
IL-4, IL-10, IL-13, CSF2, LIF, IRF4, and NFATC1 were also
observed to be upregulated in IL5hiCD4+ T cells. Moreover, these
molecules (and IL-5) were also upregulated in IL13hiCD4+ T cells
(Supplemental Table V).
For IL-17A, only two upregulated signature molecules

(i.e., IL-26 and IL-23R) were obtained under our strict filter
conditions. IL-26 belongs to the Th17 cytokine family; IL-23R is
the key receptor for Th17 development, and it defines human Th17
cells (41). However, more upregulated genes would be identified if

the filter conditions were loosened. For example, if we did not
consider the size of Pearson’s r value, hundreds of candidate
DEGs would be produced (Supplemental Table V), including
other known cytokines that are highly expressed by Th17 cells
(42), such as IL-22 (222974_at, r = +0.027935), CSF2 (210229_s_at,
r = +0.030727), IL-17F (234408_at, r = +0.42007), CCL20 (205476_at,
r = +0.36316), IL-21 (221271_at, r = +0.11259), and IFNG
(210354_at, r = +0.14145). Similarly, cytokines, such as IL-17A,
IL-22, IL-26, IL-9, CCL20, and IL-21, were also observed in the
IL-7F–labeled subpopulation (Supplemental Table V).
We also found that some genes were frequently screened out from

different subpopulations, such as IL-2, IL-3, CSF2, and LIF for
cytokines and ZBED2, NFATC1, IRF4, BATF3, and ZBTB32 for
transcription factors. These results suggested that these molecules
could play important roles in controlling the development and/or
the functions of most Th cells. The transcription factor ZBED2
often obtained a high rank order among the upregulated gene sets of
IL4hiCD4+, IL5hiCD4+, IL9hiCD4+, IL13hiCD4+, IL21hiCD4+, and
IFNGhiCD4+ T cells (Table IV, Supplemental Table V), which
suggested the functional importance of this factor in Th cells.
Downregulated genes received less attention with regard to

functions in these cytokine-producing T cells. The candidate
transcription factor ZMAT1 was frequently downregulated in the
subpopulations marked by IL-4, IL-5, IL-9, IL-13, IL-17A, IL-17F,
IL-21, IL-22, and IL-26 (Supplemental Table V). No functional
associations have been established between ZMAT1 and Th cells.
ALOX5 (also known as 5-LO) was downregulated in IL-4–, IL-5–,
and IL-13–labeled subpopulations (Supplemental Table V). It was
revealed that splenic CD4+ T cells from 5-LO–deficient mice
produce significantly higher levels of IL-4 and IL-13; moreover,
immunization of 5-LO–deficient mice results in skewing toward a
Th2 immune response (43). This finding is in accord with our
findings in human CD4+ T cells.
Because few pure Th cells (Th1, Th2, Th9, Th17, Th22, and

Tfh), based on sample annotations (Supplemental Table I), were
actually contained in the CD4+ T cell samples, our results further
showed the feasibility, effectiveness, and predictability of the
method for the identification of signature genes. In addition, the
large numbers of upregulated or downregulated candidate genes
(Supplemental Table V) provide new opportunities for studies on
the functions and mechanisms of Th cells.

Functional relationships for cytokine-producing CD4+ T cells

A further analysis revealed the functional relationships among
these cytokine-producing CD4+ T cells when the upregulated

FIGURE 2. Relationships between APA or PP

rates and Pearson’s correlation. The x-axes repre-

sent correlation coefficients, and the y-axes indicate

the PP rate (A and B) or the APA rate (C and D). A

total of 20,283 human and 20,963 mouse genes was

used for analysis. For each panel, the bottom and

top of the box represent the first and third quartiles,

and the band inside the box represents the second

quartile (the median). The whiskers represent the

datum still within the 1.5 interquartile range.
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DEGs of each subpopulation were adjusted to contain similar gene
counts by decreasing the correlation strength. As shown in Fig. 3,
some cytokine-producing CD4+ T cells were tightly connected,
such as those labeled IL-4, IL-5, IL-10, IL-13 and IL-22. IL-4, IL-
5, and IL-13 belong to the Th2 family cytokines. Th2 cells also
stably express larger amounts of IL-10 than do other effector
T cell subsets (44). Our results showed that these Th2 cytokine–
producing CD4+ T cells had closer relationships. IL-22 is not a
specific Th cell cytokine, because Th17 and Th22 cells can
produce it (9). In our system, IL22hiCD4+ T cells only referred to
CD4+ T cells that highly expressed IL-22; thus, they might be
derived from both Th17 and Th22, and/or from other CD4+

T cells that can produce IL-22. Our results revealed that IL22hi

CD4+ T cells were actually more similar to Th2 cells. Correla-
tion analysis also revealed that IL-22, IL-10, and some other Th2
cytokines were clustered together (Fig. 4), which further sug-
gested that these Th cells could share close functional relation-

ships. IL-22–producing CD4+ T cells also produced high levels
of IL-13 in patients with atopic dermatitis, and a possible shift
from Th22 to Th22/Th2 cells in the skin microenvironment was
suggested (45).
In relative terms, IL-9 and IL-17F, as well as IL-17A and IL-26,

were tightly connected (Figs. 3, 4). In addition to expressing IL-
17A and IL-17F, Th17 cells express IL-9 (46), IL-21, IL-22, and
IL-26 (41, 47). Th9 cells can produce large amounts of IL-9 and
IL-10 and small amounts of IL-17, IL-21, IL-22, and IFN-g (47).
In addition, IFN-g can be coexpressed with IL-17A (48) and IL-21
(49). According to our results, these cytokine-producing CD4+

T cells shared more close relationships than Th2 cytokine–pro-
ducing T cells (Figs. 3, 4). In addition, TGFB1hiCD4+ T cells were
closer to FOXP3hiCD4+ T cells than to other subpopulations
(Figs. 3, 4), which might be expected, because it is well known
that TGF-b can induce Treg differentiation, and Tregs need
TGF-b to exert their regulatory functions (8).

Table III. Functional evaluation of FOXP3hiCD4+ T cells

GO Term Name p Value Adjusted p Value

GO:0045619 Regulation of lymphocyte differentiation 9.05E208 3.17E205
GO:0051249 Regulation of lymphocyte activation 2.56E206 8.97E204
GO:0002694 Regulation of leukocyte activation 3.98E206 1.39E203
GO:0050865 Regulation of cell activation 4.92E206 1.72E203
GO:0045580 Regulation of T cell differentiation 5.02E206 1.76E203
GO:0051250 Negative regulation of lymphocyte activation 7.27E206 2.55E203
GO:0006924 Activation-induced cell death of T cells 8.20E206 2.87E203
GO:0070231 T cell apoptosis 8.20E206 2.87E203
GO:0002695 Negative regulation of leukocyte activation 8.41E206 2.94E203
GO:0042129 Regulation of T cell proliferation 9.23E206 3.23E203
GO:0050866 Negative regulation of cell activation 1.06E205 3.70E203
GO:0050670 Regulation of lymphocyte proliferation 2.12E205 7.43E203
GO:0032944 Regulation of mononuclear cell proliferation 2.20E205 7.69E203
GO:0070663 Regulation of leukocyte proliferation 2.20E205 7.69E203
GO:0002683 Negative regulation of immune system

process
2.59E205 9.08E203

GO:0070227 Lymphocyte apoptosis 3.04E205 1.06E202
GO:0050863 Regulation of T cell activation 6.43E205 2.25E202
GO:0043029 T cell homeostasis 9.82E205 3.44E202
GO:0002682 Regulation of immune system process 1.14E204 3.97E202

Table IV. The top five genes at the probe set level for several cytokine-producing subpopulations

Label Gene Probe Set Symbol r Mean of Average D of All Data Sets

IFNG 219836_at ZBED2 0.70 34.19
207849_at IL2 0.60 35.00
207906_at IL3 0.54 31.56
228066_at C17orf96 0.69 31.24
221271_at IL21 0.57 29.42

IL-4 210229_s_at CSF2 0.96 34.78
207849_at IL2 0.78 31.13
207906_at IL3 0.63 30.27
207952_at IL5 0.93 30.58
219836_at ZBED2 0.56 32.06

IL-9 207906_at IL3 0.51 23.73
219836_at ZBED2 0.55 23.94
228066_at C17orf96 0.67 22.45
204695_at CDC25A 0.62 20.90
204603_at EXO1 0.61 18.59

IL-17A 221111_at IL26 0.65 26.33
1552912_a_at IL23R 0.65 15.60

IL-22 210229_s_at CSF2 0.79 33.65
207906_at IL3 0.69 29.91
207849_at IL2 0.78 29.23
207952_at IL5 0.93 27.99
207539_s_at IL4 0.79 28.15

For more details, see Supplemental Table V.
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Therefore, our results revealed that, through electronic sorting
and correlation analyses, the functional relationships among dif-
ferent immune cell subpopulations could be clearly addressed.

Prediction of CD4+ T cell subpopulations and the evaluation of
their functions

Because different immune cells (either from developmental line-
ages or differential states) are actually committed to distinctive
functions, we used the term “subpopulations” to designate all of
the functional states of immune cells, without considering whether
these subpopulations represent true developmental lineages and
stages. Next, we made a systematic analysis of all of the potential
CD4+ T cell subpopulations and their functional clues.
During screening of label genes, genes with GPL scores $ 30

were considered. Moreover, the samples were required to have a
maximum rank score . 90 (or 80 in cases in which the third
quartile [Q3] was not , 55) to ensure the inclusion of sufficient
samples with high and low/no expression. Some genes had mul-
tiple probe sets, and the matched probe sets with the maximum
ARS were used. In total, we identified 747 novel label genes for
further analysis, and a total of 760 genes (747, plus the 12
cytokine-encoding genes above, plus FOXP3) was electronically
sorted (Supplemental Table I).
In total, 127,142 upregulated and 24,775 downregulated genes

were identified using our strict filter conditions (Supplemental
Table VI). This meant that an average of 177 (127,142/717) up-
regulated and 42 (24,755/583) downregulated genes (at the gene
level but not the probe set level) were screened out for each label
gene. Functional analyses revealed that the main functions of the
potential CD4+ T cell subpopulations were associated with re-
sponse to immune system process (GO:0002376), immune re-
sponse (GO:0006955), hematopoietic cell lineage (hsa04640),

regulation of immune system process (GO:0002682), response to
wounding (GO:0009611), external stimulus (GO:0009605), in-
flammatory response (GO:0006954), and many other regulatory
functions (Supplemental Table VII). Therefore, these results pro-
vide a rich resource for big data–driven experimental verification
to discover novel CD4+ T subpopulations and to further identify
their signature genes and functions.

Discussion
With the accumulation of publicly available immunomics data,
integrative computational analysis and effective utilization of these
big data for gaining immunological insights are becoming in-
creasingly important for immunologists. As a great and valuable
resource, omics big data should be explored more deeply and used
to drive big data–based discoveries that can provide key clues and
solutions to resolve immunological problems. In recent years,
immune cells were found to be extremely complex, and growing
numbers of subpopulations have been or will be discovered. High
heterogeneity and plasticity among immune cell subsets further
increases the complexity. Thus, the use of big data as a new
technology makes it highly feasible and effective to perform
comprehensive and global evaluations of many immunological
issues, as well as to solve immunological problems, with great
savings in terms of time, money, and research effort.
Analysis of GPL based on big data can be well suited to the

evaluation of marker molecules (14). Genes can be divided into
those with low and high plasticity, which have different applica-
tions (Supplemental Fig. 3). Genes with low plasticity are more
likely to maintain relatively stable states with high or low/no
expression (Supplemental Figs. 1, 2), and these genes are suit-
able for immune cell lineage markers, including positive and
negative markers (14 ) (Supplemental Figs. 4, 5). However, highly

FIGURE 3. Connections between Th cell subpopulations based on electronic sorting results. For each labeled gene (nodes in red), the white nodes, which

are directly connected by edges (green lines between any two nodes), represent the upregulated genes.
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plastic genes are very suitable to serve as markers for immune cell
subpopulations (Supplemental Fig. 3, Supplemental Table IV).
Our results also implied that more subtle subdivisions could be
further identified among the greater subpopulations based on GPL.
For example, Treg subpopulations, such as CXCR3+ Tregs (50),
HLA-DRA+ Tregs (51), TIM3+ Tregs (52), CCR6+ Tregs (53),
LAG3+ Tregs (54), and CD8A+ Tregs (55), were reported. All of
these label genes are highly plastic in Tregs, as shown in the
ImmuSort database. Actually, many studies revealed that Tregs are
highly heterogeneous (56, 57). Therefore, GPL directly contrib-
utes to phenotypic diversity.
In this study, we established a new method, electronic sorting, to

identify the potential characteristic genes of immune cell sub-
populations. Electronic sorting uses correlation analysis and takes
dosage changes into account. Theoretically, the genes that are
tightly associated with a cytokine of interest, a transcription factor,
or a cell surface membrane protein can be identified by electronic
sorting. Electronic sorting can provide vital information for FACS
analysis; however, as a bioinformatics method, it cannot replace
FACS, which is generally performed at the protein level and is
widely used in immunological studies.
Because no or very few characteristic genes were identified for

some label genes (Supplemental Table VI), the process of elec-
tronic sorting for these genes may require further optimization.
Based on our statistics for the 760 label genes (Supplemental
Table VI), we found that the genes with higher rank orders of-
ten received more support during cross-validation (Supplemental
Fig. 6). This finding suggests that genes with larger absolute d
values might have more stability. Actually, a large-magnitude
change in the d values generally achieved greater statistical
significance, as shown in the volcano plots, when FOXP3 was
used as an example (Supplemental Fig. 7). In addition, our results
show that the identified DEGs for all label genes are generally
highly plastic (Supplemental Fig. 8), which suggests that the
method to detect DEGs in the differential expression study might
actually be to identify certain highly plastic genes. Finally, it must
be noted that not all label genes with multiple DEGs are expected
to be observed at the same time under an experimental condition.
Electronic sorting made it possible to trace immune cell sub-

populations according to predefined DEGs and/or functional an-
notations. This was a process of reverse electronic sorting. For
example, there were $168 potential subpopulations associated

with inflammatory response (GO:0006954) (Supplemental Table VII).
Through reverse electronic sorting, we found that, in addition to the
FOXP3hiCD4+ T cells, at least the ASB2hiCD4+ T cells were asso-
ciated with negative regulatory functions (No. 409 in Supplemental
Table VII). ASB2 was highly plastic in CD4+ T cells (GPL score = 54.
5), and it was positively correlated to FOXP3 (Table II, Supplemental
Table VI). However, all electronic sorting analyses for highly plastic
genes must be completed before reverse electronic sorting.
Although microarray data were used for analysis in this study, we

believe that the current pipeline is also suitable for RNA-sequencing
(RNA-seq) data; however, more complicated data pretreatments are
needed. For example, the raw data file from RNA-seq is often very
large and ismore difficult and time-consuming to process.Moreover, a
common gene set must be selected because the detectable gene counts
often vary among samples. Many genes often have the same raw
counts, reads per kilobase of exon model per million mapped reads
values, or fragments per kilobase of transcript per million fragments
mapped values. This results in confusion when determining the proper
rank scores using our previous method (14). Most importantly, the
sample sizes of RNA-seq for immune cells are still far smaller than
those from microarray in the Gene Expression Omnibus database.
It can be expected that increasing numbers of immune cell

subpopulations will be identified in the future. Therefore, all of the
potential immune cell subpopulations that can be labeled by various
markers or their combinations will constitute a huge repertoire of
subpopulations representing various functional states that we can call
a “populationome.” Correspondingly, the plastic genes used to label
a populationome constitute a “plasticitome.” The repertoire of a
populationome is huge. However, there remain important questions
concerning the conditions in which these subpopulations occur and
how their phenotypes can be stabilized. Our research on electronic
sorting can only partially resolve these questions (14), because not
all of the experimental conditions were described in detail during
the data submission and publication. Determining the nomenclature
for the numerous immune cell subpopulations is another issue.
Actually, many cytokines, such as IL-2, CSF2, IL-4, IL-9, IL-10,
IL-17, IL-21, IL-22, and IFNG, are cross-produced by different Th
cell subsets (one explanation for this phenomenon is phenotypic
flexibility and plasticity). Perhaps we should establish a nomen-
clature system that is based entirely on single genes and their
combinations and not merely on Th9, Th17, Th22, Tfh, and so on.
In conclusion, the highly plastic genes identified by big data

analysis have important functions in the immune system, and they
can be used to denote immune cell subpopulations. Electronic
sorting provides a novel method for using highly plastic genes to
identify immune cell subpopulations and their functional studies.
Moreover, these methods are suitable for other immune cells, such
as CD8+ T cells, B cells, dendritic cells, monocytes, macrophages,
neutrophils, and NK cells, as well as for nonimmune cells and
cancers for studies of gene expression and regulation.
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