








measured in a number of different settings, using 15-mer peptides
and ELISPOT or intracellular cytokine staining assays, in a suffi-
cient number of donors. We anticipate that this methodology will
greatly facilitate the rapid generation of tetrameric staining reagents
for investigations of immune reactivity in human populations.
Identification of the specific HLA locus and allele responsible

for presenting an epitope for recognition by specific TCRs (HLA
restriction) is necessary to fully characterize the immune response
to an Ag. In this context, it is helpful to distinguish determination of
the HLA molecule restricting responses to a given epitope in
a particular donor (i.e., individual restriction of that peptide in
that donor) from the HLA molecule(s) restricting the response
in a population (i.e., general restriction of that peptide in that
population).
Individual and general restrictions are not necessarily, and in

reality are not frequently, the same. This is because not all donors
expressing a given allele will generate T cells recognizing an
epitope presented by that allele, because of immunodominance at
the epitope and HLA levels (15, 18, 30, 31). Thus, population
restriction does not always predict individual restriction. Con-
versely, because the same epitope can be presented by multiple
alleles (epitope promiscuity) (30, 32–36), the fact that a given epi-
tope is presented in a particular individual by a specific allele does
not fully predict its general pattern of restriction in a population.
Experimental determination of HLA class II restriction is

complex and technically challenging. Because HLA molecules are
polygenic (genes are encoded by multiple loci) and polymorphic
(genes are encoded by different allelic variants), this task is
complicated due to the extreme HLA class II diversity present in
human populations (5). To determine which gene and allelic var-
iant act as restriction element, we used classic approaches such as

inhibition by HLA locus–specific Abs and/or the use of matched/
mismatched or single HLA-transfected cell lines.
Inhibition with anti-HLA class II Abs is a good way to determine

the locus (but not the allele). A primary limitation is that there are
no available Abs that can distinguish the DRB1 and DRB3/4/5 loci.
In addition, questions remain in the field as to whether pan-reactive
Abs for the DQ locus truly detect all DQ a and b combinations.
Finally, anti-HLA Abs that inhibit T cell recognition may act by
simply killing or inhibiting the APC, and hence need to be titrated
to find a “sweet spot.” The use of HLA class II–transfected cell lines
as described by McKinney et al. (6) is technically the most accurate,
but using transfected cell lines is cumbersome and transfected cell
lines are available for only the most frequent HLA alleles.
HLA binding and motif predictions could be used, as they are

widely available. However, HLA binding in itself is only a nec-
essary, but not sufficient, requisite for T cell recognition. Because
of the considerations listed earlier, it is of interest to develop al-
ternative strategies. There have been similar works in this direction,
mostly focusing on class I alleles. For example, Kiepiela et al.
(37) has applied a statistical approach similar to ours to identify
the HLA class I restriction of HIV peptides. Another statistical
method designed by Listgarten et al. (38) can identify restricting
HLA alleles for a specific epitope from ELISPOT data from a set
of patients and their respective allele type. The HLA restrictor
tool developed by Erup Larsen et al. (29) is based on the class I
binding prediction method NetMHCpan and can predict the
patient-specific epitopes restricted by alleles based on the patient
HLA allele type. However, these methods are focused on class I
alleles and are applicable to only one peptide or one patient data at
a time, whereas the RATE tool that we describe in this study was
developed to address class II restrictions and relies on datasets

Table VI. Combined RF for responsive alleles predicts restriction for EEWEPLTKKGNVWEV

Allele(s) A+R+ A2R+ A+R2 A2R2 RF pa Predicted Binding (Percentile)b

DRB1*08:01 1 2 0 22 8.3 0.120 2.58
DRB1*11:01 2 1 5 17 2.4 0.180 3.99
DRB1*08:01 + DRB1*11:01 3 0 5 17 3.1 0.024 n/ac

The response data and HLA typing from Timothy grass–allergic donors (19) were matched using the RATE program promiscuity algorithm. The combined predictions are
shown in the bottom row.

ap values calculated by Fisher’s exact test.
bPredicted binding values were obtained from IEDB (13).
cPredicted binding percentiles are not available for combined alleled.
A+, genotyped HLA allele positive; A2, genotyped HLA allele negative; R+, epitope response positive; R2, epitope response negative.

FIGURE 3. Predicted promiscuous binding epitope validated by tetramer binding. (A) Purified CD4+CD3+CD82 cells stained with VKAQNITNK-

RAALIEA tetramer-PE. (B) CD3+CD4+CD82 PBMCs stained with VKAQNITNKRAALIEA tetramer-PE after 14 d of stimulation with peptide. (C) CD3+

CD42CD8+ PBMCs stained with VKAQNITNKRAALIEA tetramer-PE after 14 d of stimulation with peptide. Numbers shown are percentages of tet-

ramer+ CD4+ or CD8+ cells.
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describing response of multiple donors, based on genetic infer-
ence. Accordingly, the output of our method is based on ORs, RF,
and p value from Fisher’s exact test for each peptide–allele com-
bination to assess the strength of association between the peptide
and allele.
The RATE tool described in this article represents a novel ap-

proach for determining HLA class II allele restriction of epitopes.
In particular, it does not depend on experimental work and is most
suited to analyze and extract immunological information from
complex datasets encompassing large numbers of peptides and
donors (as long as HLA typing data for each donor are available) as
generated in clinical studies and vaccine trials. As such, the method
is also likely to be of value in system biology studies where large
amounts of data are generated. Furthermore, because the program is
agnostic to theMHC nomenclature used, it can be expanded to other

species and we have, in fact, used it to analyze class II immuno-
genicity data obtained in the rhesus macaque system (B.R. Mothé,
C.S. Lindestam Arlehamn, C. Dow, M.B.C. Dillon, R.W. Wiseman,
P. Bohn, J. Karl, N.A. Golden, T. Gilpin, T.W. Foreman, M.A. Rodgers,
S. Mehra, T.J. Scriba, J.L. Flynn, D. Kaushal, D.H. O’Connor, and
A. Sette, submitted for publication).
Although the experimental examples and data analyses provided

in this article are focused on HLA class II, we speculate that the
program can also be applied to class I or any set of responses
associated with large polymorphisms. The limited validation we
performed to date using the data from the Los Alamos HIV Mo-
lecular Immunology database suggest that this is likely to be the case.
However, certain caveats should be kept in mind when inter-

preting results derived from the approach. Despite the various
options provided in this article, it is likely that there are instances of

Table VIII. Validation using class I data from Los Alamos HIV Molecular Immunology database

Peptide Sequence Allele A+R+ A2R+ A+R2 A2R2 RF OR p
Allele

Frequency (%)

Embedded
Epitopes from A
List Epitopes

NDIQKLVGKLNWASQIY A*30:02 9 3 58 561 7.1 29.0 0.000 10.62 KLNWASQIY
TKELQKQIIKIQNFRVYY A*30:02 18 8 49 556 6.5 25.5 0.000 10.62 KIQNFRVYY
SKLNWASQIYPGIKVRQL A*30:02 6 28 61 536 1.7 1.9 0.160 10.62 KLNWASQIY
IKIQNFRVYYRDSRDPIW A*30:02 24 16 43 548 5.7 19.1 0.000 10.62 KIQNFRVYY
TGTEELRSLYNTVATLY A*30:02 30 66 37 498 2.9 6.1 0.000 10.62 RSLYNTVATLY
GIWQLDCTHLEGKIILVA B*15:10 22 5 77 527 5.2 30.1 0.000 15.69 THLEGKIIL
GGHQAAMQMLKDTINEEA B*15:10 11 17 88 515 2.5 3.8 0.002 15.69 GHQAAMQML
LQTGERDWHLGHGVSIEW B*15:10 51 15 48 517 4.9 36.6 0.000 15.69 WHLGHGVSI
NTMLNTVGGHQAAMQMLK B*15:10 7 7 92 525 3.2 5.7 0.003 15.69 GHQAAMQML
QMVHQAISPRTLNAWVKV B*15:10 20 14 79 518 3.7 9.4 0.000 15.69 HQAISPRTL
QGYFPDWQNYTPGPGVRY A*29 9 45 95 482 1.0 1.0 1.000 16.48 YFPDWQNYT
QITLWQRPLVSIKVGGQI A*68:02 1 12 109 509 0.4 0.4 0.709 17.43 ITLWQRPLV
QLEKEPIAGAETFYVDGA A*68:02 25 17 85 504 3.4 8.7 0.000 17.43 GAETFYVDGA
GLGQYIYETYGDTWTGV A*68:02 40 13 70 508 4.3 22.3 0.000 17.43 ETYGDTWTGV
ETYGDTWTGVEALIRIL A*68:02 35 11 75 510 4.4 21.6 0.000 17.43 ETYGDTWTGV
GAETFYVDGAANRETKI A*68:02 65 61 45 460 3.0 10.9 0.000 17.43 GAETFYVDGA
GIQQEFGIPYNPQSQGVV B*15:03 7 12 106 506 2.1 2.8 0.060 17.91 IQQEFGIPY
YHCLVCFQTKGLGISYGRa B*15:03 11 7 102 511 3.4 7.9 0.000 17.91 FQTKGLGISY
VKAACWWAGIQQEFGIPYa B*15:03 38 11 75 507 4.3 23.4 0.000 17.91 IQQEFGIPY
PRTLNAWVKVIEEKAF a B*15:03 58 15 55 503 4.4 35.4 0.000 17.91 VKVIEEKAF
AVFIHNFKRKGGIGGYSAa B*15:03 80 12 33 506 4.9 102.2 0.000 17.91 FKRKGGIGGY
YVDRFFKTLRAEQATQDV B*15:03 18 132 95 386 0.7 0.6 0.038 17.91 YVDRFFKTL
GPKEPFRDYVDRFFKTLR B*15:03 24 105 89 413 1.0 1.1 0.798 17.91 YVDRFFKTL
GKKAIGTVLVGPTPVNII B*15:03 22 19 91 499 3.0 6.3 0.000 17.91 GKKAIGTVL
EVNIVTDSQYALGII B*15:03 1 21 112 497 0.3 0.2 0.152 17.91 VTDSQYALGI
WVKVIEEKAFSPEVIPMF a B*15:03 2 39 111 479 0.3 0.2 0.020 17.91 VKVIEEKAF
IYPGIKVRQLCKLLRGAK B*42:01 21 12 99 499 3.3 8.8 0.000 19.02 YPGIKVRQL
NYTPGPGVRYPLTFGWCF a B*42:01 64 136 56 375 1.7 3.2 0.000 19.02 TPGPGVRYPL
SKLNWASQIYPGIKVRQL B*42:01 16 18 104 493 2.5 4.2 0.000 19.02 YPGIKVRQL
EVGFPVRPQVPLRPMTFK B*42:01 67 150 53 361 1.6 3.0 0.000 19.02 RPQVPLRPM
MASEFNLPPIVAKEIVAa B*42:01 47 23 73 488 3.5 13.7 0.000 19.02 LPPIVAKEI
GATPQDLNTMLNTVGGH B*42:01 90 90 30 421 2.6 14.0 0.000 19.02 TPQDLNTML
GIKQLQTRVLAIERYLK B*58:02 36 3 96 496 4.4 62.0 0.000 20.92 QTRVLAIERYL

The analysis of the data resulted in 33 peptide–allele combinations where the allele was relatively frequent among the patients (present in$10% of patients) and expressed in
at least one positive donor (A+R+ $ 1). Of these 33 combinations, 27 peptide–allele restrictions were significant hits (p # 0.05).

aEpitope allele restrictions confirmed by Larsen et al. (29).

Table VII. Combined RF for responsive alleles predicts restriction for VKAQNITNKRAALIEA

Allele(s) A+R+ A2R+ A+R2 A2R2 RF pa Predicted Bindingb (Percentile)

DQB1*06:02 2 1 5 23 3.0 0.120 9.98
DRB1*14:04 1 2 0 28 10.3 0.097 9.92
DQB1*06:02 + DRB1*14:04 3 0 5 23 3.9 0.012 n/ac

The response data and HLA typing from donors recently vaccinated with acellular B. pertussis were matched using the RATE program promiscuity algorithm. The combined
predictions are shown in the bottom row.

ap values calculated by Fisher’s exact test.
bPredicted binding values were obtained from IEDB (13).
cPredicted binding percentiles are not available for combined alleled.
A+, genotyped HLA allele positive; A2, genotyped HLA allele negative; R+, epitope response positive; R2, epitope response negative.
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ambiguous results, especially for peptides weakly or infrequently
recognized. This is most commonly observed when too few sub-
jects have been tested, or in the case of alleles that are either rare
or very frequent. As a rule of thumb, strong associations can be
detected with as few as 10–15 subjects, but ∼30 seems to be re-
quired in most cases, with the power of the analysis increasing
dramatically as more subjects are included. However, the addi-
tional calculation of RF as described in this article increases the
likelihood of detection for strong association even with the use of
a limited number of subjects. These instances are usually rela-
tively few, and the ambiguity can be resolved with additional
testing using transfected cell lines (39) or direct test of tetrameric
staining reagents.
Second, it is possible that HLA molecules encoded at different

loci might be associated with statistically significant OR values for
the same epitope. Although in some cases this may indeed be
because of the promiscuity of the epitope, in others it may reflect
the fact that the different HLA loci are physically close to one
another in their chromosomal location, and thus are in strong
linkage disequilibrium with each other (40, 41). For this reason, if
alleles for more than one HLA locus are associated with signifi-
cant OR values for a specific epitope, further analysis is war-
ranted. We recommend that the locus with the best p value be
considered first. If the combination of the data from this locus with
any other locus does not lead to a better p value for the combined
data, the association is likely due to linkage disequilibrium and
should be discarded. In addition, instances where an allele enco-
ded by a particular locus is not predicted to bind the epitope
under consideration likely reflect an association due to linkage dis-
equilibrium and should be considered with caution or discarded.
Third, although one of the advantages of RATE is to be able to

globally analyze a dataset generated over multiple experiments
(because it is in our experience impossible to determine restrictions in
a single experiment by cellular methods for many donors and many
peptides), the issue of reproducibility from experiment to ex-
periment needs to be carefully considered. If significant experiment-
to-experiment variability is present in a given dataset, this would
correspondingly affect the conclusions. Therefore, the application
of appropriate positive and negative controls within each experi-
ment is necessary. In our experience, we always include a negative
control and a positive PHA control, and ensure that each falls
within acceptable ranges, based on our routine quality control of
experimental assays.
Finally, we acknowledge that the experimental validation of the

RATE approach is still somewhat limited. In total, RATE correctly
predicted 10 novel restrictions (8 M. tuberculosis and 2 B. per-
tussis) and 5 previously validated restrictions (3 M. tuberculosis
and 2 Timothy Grass). Evaluation of additional epitopes mapped
by other investigators is limited by the fact that immunogenicity
data need to be described on a donor-by-donor basis, and HLA
typing must be available for each donor. Still, clearly additional
experimental work will more firmly establish the success rate of
the approach.
In conclusion, we have developed an automated method to infer

HLA restriction from large datasets of T cell responses in HLA-
typed subjects. The Web-accessible program calculates OR and
relative frequencies from simple data tables, incorporates predic-
tion of HLA binding capacity, and accounts for linkage disequi-
librium and promiscuous recognition by iterative calculation of OR
values for different combinations of HLA molecules. We consider
the current algorithm and software implementation a proof of
principle that it is possible to derive HLA restrictions based on
genetic associations. To the best of our knowledge, the program
presented in this article is the first that allows determination of

restriction at the population level, and estimates response rate and
immunodominance, as well as promiscuous restrictions. Accord-
ingly, we believe it is important that the current prototype is made
available to the scientific community. The tool is indeed available
online at http://iedb-rate.liai.org, and we look forward to receiving
user feedback for its improvement and optimization. We expect
that future refinements of the approach will lead to improved
results, for example, by more precisely modeling the statistical
underpinnings of HLA linkage and promiscuous binding, and
incorporating the predicted binding affinities as statistical priors
rather than binary cutoffs.
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2. Boegel, S., M. Löwer, M. Schäfer, T. Bukur, J. de Graaf, V. Boisguérin,
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