TRIF Signaling Is Essential for TLR4-Driven IgE Class Switching

J Immunol published online 14 February 2014
http://www.jimmunol.org/content/early/2014/02/14/jimmunol.1300909

Supplementary Material
http://www.jimmunol.org/content/suppl/2014/02/14/jimmunol.1300909.9.DCSupplemental

Why The JI? Submit online.
• Rapid Reviews! 30 days* from submission to initial decision
• No Triage! Every submission reviewed by practicing scientists
• Fast Publication! 4 weeks from acceptance to publication

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
TRIF Signaling Is Essential for TLR4-Driven IgE Class Switching

Erin Janssen,* Esra Ozcan,* Kyriaki Liadaki,* Haifa H. Jabara,* John Manis,†§ Sumana Ullas,* Shizuo Akira,§ Katherine A. Fitzgerald,‖ Douglas T. Golenbock,‖ and Raif S. Geha*§

The TLR4 ligand LPS causes mouse B cells to undergo IgE and IgG1 isotype switching in the presence of IL-4. TLR4 activates two signaling pathways mediated by the adaptor molecules MyD88 and Toll/IL-IR domain-containing adapter-inducing IFN-β (TRIF)–related adaptor molecule (TRAM), which recruits TRIF. Following stimulation with LPS plus IL-4, Tram−/− and Trif−/− B cells completely failed to express Cε germline transcripts (GLT) but secreted IgE. In contrast, Myd88−/− B cells had normal expression of Cε GLT but reduced IgE secretion in response to LPS plus IL-4. Following LPS plus IL-4 stimulation, Cγ1 GLT expression was modestly reduced in Tram−/− and Trif−/− B cells, whereas Aicda expression and IgG1 secretion were reduced in Tram−/−, Trif−/−, and Myd88−/− B cells. B cells from all strains secreted normal amounts of IgE and IgG1 in response to anti-CD40 plus IL-4. Following stimulation with LPS plus IL-4, Trif−/− B cells failed to sustain NF-κB p65 nuclear translocation beyond 3 h and had reduced binding of p65 to the IκB promoter. Addition of the NF-κB inhibitor, JSH-23, to wild-type B cells 15 h after LPS plus IL-4 stimulation selectively blocked Cε GLT expression and IgE secretion but had little effect on Cγ1 GLT expression and IgG secretion. These results indicate that sustained activation of NF-κB driven by TRIF is essential for LPS plus IL-4-driven activation of the Cε locus and class switching to IgE. *The Journal of Immunology, 2014, 192: 000–000.

Class switch recombination (CSR) allows a single B cell clone to produce Abs with the same fine specificity but different effector functions determined by the H chain isotype. The specificity of the H chain C region genes targeted for recombination depends on the cytokine signal received by the B cell. CSR involves activation of IgH germline transcripts (GLT) and the gene for activation-induced cytidine deaminase (AICDA), followed by deletional switch recombination, and expression of mature transcripts of the switched Ig isotype (1).

Stimulation of primary murine B cells with the TLR4 ligand LPS in the presence of IL-4 induces class switching to IgE and IgG1. Both signals synergize to induce optimal transcription of the ε GLT (2, 3), the γ1 GLT (4), and Aicda loci (5), causing CSR to IgE and IgG1. TLR4 activates two signaling pathways mediated by the adaptor molecules, MyD88 (6) and the Toll/IL-IR domain-containing adapter-inducing IFN-β (TRIF)–related adaptor molecule (TRAM), which recruits TRIF (7, 8). Following ligand binding, TLR4, which is expressed on the cell membrane, recruits MyD88, resulting in rapid activation of NF-κB (9, 10). After its ligand-driven internalization into endosomes, TLR4 recruits TRAM, which in turn recruits TRIF. TRIF-mediated activation of NF-κB follows a late course, due to the time lag involved in the internalization of TLR4 into endosomes (7, 10).

Binding of IL-4 to its receptor recruits the Janus kinases, Jak1 and Jak3, which cause the phosphorylation and nuclear translocation of STAT6 (11, 12). STAT6 and NF-κB bind to the Ce and Cγ1 promoters driving the expression of Ce and Cγ1 GLT (13, 14). STAT6 and NF-κB also bind to the Aicda promoter (5). AICDA acts on switch regions in the Ce, Cγ1, and Ce genes to initiate deletional switch recombination and isotype switching to IgG1 and IgE (15).

The roles of the MyD88 and TRAM/TRIF pathways in TLR4-driven isotype switching have not been explored. In this study, we provide evidence that the TRAM/TRIF pathway is essential for IgE isotype switching of mouse B cells stimulated with LPS plus IL-4 due to its ability to cause the late phase of activation of NF-κB, which is critical for the activation of the Ce locus in these cells.

Materials and Methods

Mice

*Tram−/− and Myd88−/− mice were previously described (16). They were bred onto a BALB/c background and housed at the animal facility of Boston Children’s Hospital. Trif−/− and Trif−/−/Myd88−/− mice were previously described (16). These mice and genetically matched wild-type (WT) controls on Sv129/C57BL6 background were housed at the animal facility of the University of Massachusetts Medical School (Worcester, MA). All mice were bred and kept in specific pathogen-free conditions. All procedures performed on the animals were approved by the Animal Care and Use Committee of Boston Children’s Hospital.

Division of Immunology, Boston Children’s Hospital, Boston, MA 02115; Department of Pediatrics, Harvard Medical School, Boston, MA 02115; Division of Transfusion, Boston Children’s Hospital, Boston, MA 02115; Department of Pathology, Harvard Medical School, Boston, MA 02115; Laboratory of Host Defense, Osaka University, Osaka 565-0871, Japan; and University of Massachusetts Medical School, Worcester, MA 01605.

E.I. and E.O. contributed equally to this work.

Received for publication April 4, 2013. Accepted for publication January 13, 2014.

Address correspondence and reprint requests to Dr. Raif S. Geha, Division of Immunology, Boston Children’s Hospital, One Blackfan, Boston, MA 02115. E-mail address: raif.geha@childrens.harvard.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: AICDA, activation-induced cytidine deaminase; ChIP, chromatin immunoprecipitation; CSR, class switch recombination; GLT, germline transcript; PARP, poly(ADP-ribose) polymerase; TRAM, Toll/IL-IR domain-containing adapter-inducing IFN-β–related adaptor molecule; TRIF, Toll/IL-IR domain-containing adapter-inducing IFN-β; WT, wild-type.
Ig production and proliferation by B cells

Naive B cells were negatively sorted from mouse spleenocytes using biotin-conjugated mAbs to CD11b, CD43, Thy1.2, CD138, IgG1, IgG2a/b, IgG3, IgA, and IgE along with streptavidin magnetic beads (Dynabeads M-280; Invitrogen). Total B cells were purified by negative selection using microbeads conjugated to Abs against CD43 (Milenyi Biotec). FACs analysis revealed that >98% of magnetically sorted cells were B220+ and CD3−. B cells were cultured at a concentration of 1 × 10^6/ml in RPMI 1640 containing 10% FCS, l-glutamine, penicillin/streptomycin, and 50 mM 2-ME. B cells were stimulated with LPS (Escherichia coli 026:B6; Sigma-Aldrich) at 10 μg/ml or anti-CD40 (BD Pharmingen) at 100 ng/ml in the presence of 50 ng/ml IL-4 (R&D Systems). The NF-κB inhibitor JSH-23 (Santa Cruz Biotechnology) was added at 20 μM to cultures at various time points. After 6 d in culture, supernatants were assayed for IgG1 and IgE by ELISA, as previously described (17). Baseline Ig secretion from unstimulated cultures (accounting for <1% of induced values) was subtracted, and the final results were calculated as a percentage of Ig secreted by WT B cells. For each individual experiment, B cells from three WT control mice and three mutant mice from the various strains were used. We divided each individual WT and mutant strain value by the mean of the three WT values (defined as 100%) and expressed it as a percentage of the mean. This allowed us to calculate a SD for both the WT and mutant strain samples. To assay proliferation, cultures were pulsed at 72 h with 1 μCi ^3H-thymidine and then harvested after 16 h of additional culture. To examine the number of cell divisions, B cells were loaded with 1 μM Cell Tracker Violet (Life Technologies) prior to stimulation with LPS plus IL-4 or anti-CD40 plus IL-4, as described above. After 6 d in culture, cells were stained with anti-B220 FITC and 7-aminoactinomycin D (eBioscience). B220−7-aminoactinomycin D− cells were gated on, and their Cell Tracker Violet profile was analyzed.

B cell survival assay

B cells were stained on day 3 after stimulation with annexin V-FITC and propidium iodide (Bio Vision) and analyzed by FACs.

RT-PCR analysis

RNA was extracted from 4-d cultures using TRIzol (Invitrogen) and reverse transcribed by Superscript II RT (Invitrogen). PCR primers and conditions used to detect Iε-C, Iλ-Ce, Iγ1-Cy1, Iμ-Cy1, AICDA, and β2 microglobulin were previously described (17). To ensure adequate detection, the cycle number for the Iε-Ce and Iλ-Ce transcripts was increased to 42, whereas 30 cycles were used to amplify Iγ1-Cy1, Iμ-Cy1, AICDA, and β2 microglobulin. PCR conditions were tested with three dilutions of cDNA to ensure that the products measured were in the linear range (Supplemental Fig. 1A). Amplified products were separated on agarose gels and stained with ethidium bromide.

To examine expression of Bcl2, Id2, and PU.1, B cells were stimulated with LPS plus IL-4. RNA was extracted from cultures at various time points and reverse transcribed. TaqMan primers for Bcl2, Id2, and PU.1 were obtained from Applied Biosystems, and real-time PCR reactions were run on cDNA using the ABI Prism 7300 (Applied Biosystems). Relative expression was based on β2 microglobulin expression for each sample.

Nuclear translocation of the NF-κB p65 subunit and STAT6

Nuclear extracts were prepared using a nuclear extract kit (Active Motif). Protein content was measured using Bradford reagent (Pierce, Rockford, IL). Immunoblotting was performed using Abs to p65, STAT6, and poly (ADP-ribose) polymerase (PARP; Santa Cruz Biotechnology). Nuclear translocation of p65 and STAT6 was quantified using the ImageJ program from the National Institutes of Health and normalized to the nucleus-specific protein PARP.

Chromatin immunoprecipitation assay

Total B cells were purified from splenocytes of Trif−/− mice and genetically matched WT controls, stimulated with LPS plus IL-4 or anti-CD40 plus IL-4, washed, and then treated with 1% formaldehyde. The B cells were processed further using the provided protocol from the chromatin immunoprecipitation (ChIP) Assay Kit (Upstate Biotechnologies) with the following modification: 125 μM glycine was added for 5 min to terminate cross-linking, and then the cells were washed with PBS and resuspended in the ChIP Assay Kit lysis buffer. Cells were sonicated (Misonix Sonicators) to shear DNA and obtain chromatin with lengths between 400 and 1500 bp. Sonicated cell supernatants were diluted 10-fold in ChIP dilution buffer. A total of 5 μg p65 (rabbit polyclonal Ab; Abcam) or rabbit IgG isotype control (Invogen) Abs was added to the chromatin solution and incubated overnight at 4°C. Magnetic protein G–coated beads were then added. Following incubation for 1 h, the beads were washed and DNA was eluted. The eluted DNA was purified by phenol/chloroform extraction and ethanol precipitation. Real-time PCR of the IgE promoter was performed on 10-fold DNA dilutions of immunoprecipitates using the following primers: forward, 5′-AGGGAACCTCCAAGGCTCTAA-G3′; reverse, 5′-CCA-TTATACATCCACGATGTTAG-3′; and FAM-probe, 5′-TITAGTGAG-GGGACTCTAGGCAGA-3′. RT-PCR was also performed using mouse β-globin primers forward, 5′-GACGAGTCCAAGAGGCTCTCG-3′; reverse, 5′-CTTGAGGAGCAGAGGAGGAAAG-3′; and FAM-probe, 5′-ATGGATGCGAAGCCAAGGAGCCAT-3′ to calculate the non-specific background DNA binding. The primers were obtained from Integrated DNA Technologies. The ΔΔCq method was used to generate relative expression values (18).

Statistics

The p values were calculated using the paired t test with PRISM software (Prism Software).

Results

The TRAM/TRIF pathway is essential for LPS- and IL-4–driven IgE production

We compared the response of negatively sorted naive B cells (95% IgM+ IgD+ cells) from *Tram−/−, Myd88−/−, and WT BALB/c* controls stimulated with LPS plus IL-4. *Tram−/−* B cells failed to secrete detectable amounts of IgE in response to stimulation with LPS plus IL-4 (Fig. 1A). Similar data were obtained when Trif−/− B cells were compared with B cells from genetically matched Sv129/C57BL6 WT controls (Fig. 1B). The failure of Trif−/− and Trif−/−/− B cells to undergo IgE isotype switching in response to LPS plus IL-4 did not represent a global defect in IgE isotype switching or in responsiveness to IL-4, because the same B cells produced normal amounts of IgE when stimulated with anti-CD40 plus IL-4 (Fig. 1B). *Myd88−/−* B cells secreted reduced amounts of IgE compared with WT B cells in response to LPS plus IL-4, but normal amounts in response to anti-CD40 plus IL-4 (Fig. 1A, 1B).

In contrast to the absence of detectable IgE secretion after LPS plus IL-4 stimulation, IgG1 secretion by B cells from *Tram−/−* and *Trif−/−* mice was only partially reduced compared with B cells from WT controls (Fig. 1C). IgG1 secretion by LPS plus IL-4–stimulated B cells from *Myd88−/−* mice was also partially reduced (Fig. 1C). B cells from all three knockout strains secreted comparable amounts of IgG1 in response to anti-CD40 plus IL-4 (Fig. 1D). Because IgG1 production following LPS plus IL-4 stimulation was partially preserved in *Tram−/−*, *Trif−/−*, and *Myd88−/−* B cells, we investigated whether pathways other than TRIF and TRIF−mediated pathways play an essential and nonredundant role in TLR4-driven IgE switching, and the role of TRIF in Myd88 pathways play important but partially redundant roles in TLR4-driven IgG1 switching.

The TRAM/TRIF and Myd88 pathways both contribute to B cell proliferation and survival in response to LPS plus IL-4

Isotype switching is linked to proliferation (19). *Tram−/−* and *Myd88−/−* B cells showed a significant reduction in proliferation and underwent fewer cell divisions in response to LPS plus IL-4 relative to WT B cells. In contrast, they proliferated and divided normally in response to anti-CD40 plus IL-4 (Fig. 2A, 2B). Similar results were obtained with Trif−/− B cells (Supplemental
IgG1 secretion by naive B cells from Trif

Results represent the mean ± SD of secreted Ig normalized to WT control from five independent experiments. *p < 0.05, **p < 0.01, ****p < 0.0001.

FIGURE 1. IgE and IgG1 secretion by Tram^{−/−}, Trif^{−/−}, and Myd88^{−/−} B cells in response to LPS plus IL-4 and anti-CD40 plus IL-4. (A and B) IgE secretion by naive B cells from Tram^{−/−}, Myd88^{−/−}, and WT mice (left panels) and from Trif^{−/−} and WT controls (right panels) after 6 d in culture. (C and D) IgG1 secretion by naive B cells from Tram^{−/−}, Myd88^{−/−} (left panels), and Trif^{−/−} mice (right panels) along with their WT controls after 6 d in culture.

When assessed by annexin V and propidium iodide staining, Tram^{−/−} and Myd88^{−/−} B cells had reduced survival by day 4 of culture with LPS plus IL-4. In contrast, after 4 d of anti-CD40 plus IL-4 stimulation, B cell survival was comparable among Tram^{−/−}, Myd88^{−/−}, and WT B cells (Fig. 2C). Similar results were observed with Trif^{−/−} B cells (data not shown). These results indicate that the TRAM/TRIF and MyD88 pathways play essential but partially redundant roles in TLR4-driven B cell survival and proliferation.

The TRAM/TRIF pathway is essential for LPS plus IL-4 induction of Ce GLT expression

CSR requires expression of GLT and Aicda, followed by deletional switch recombination and expression of postswitch mature Iµ-C_µ1 transcripts (1). In response to LPS plus IL-4, WT B cells begin transcribing the Ce GLT and the Cy1 GLT by 24 h (2, 3). Ce GLT transcription by WT B cells was weakly detected on days 1–3, and it becomes robust on day 4 following LPS plus IL-4 stimulation. In contrast, Cy1 GLT transcription was readily detectable by day 1 and became robust and sustained by day 2 (Supplemental Fig. 1B). LPS plus IL-4 failed to drive expression of Ce GLT and Iµ-Ce mature transcripts in amounts comparable to WT B cells (Fig. 3B). Because expression of Ce GLT is critical for CSR to IgE (20), the inability to activate transcription at the Ce locus underlies the failure of Tram^{−/−} and Trif^{−/−} B cells to undergo IgE isotype switching in response to stimulation with LPS plus IL-4. We were unable to detect Ce GLT expression or IgE secretion in WT B cells stimulated with the TLR2 ligand Pam3CSK4, which signals exclusively via MyD88 (data not shown), further supporting the conclusion that the TRAM/TRIF pathway is strictly necessary to drive Ce GLT expression in B cells stimulated with LPS plus IL-4.

LPS plus IL-4–stimulated Tram^{−/−} and Trif^{−/−} B cells expressed a modest decrease in the amount of Cy1 GLTs on day 4 compared with WT B cells (Fig. 3, Supplemental Fig. 1). The levels of Aicda mRNA and of Iµ-Cy1 mature transcripts were reduced in LPS plus IL-4–stimulated Tram^{−/−} and Trif^{−/−} B cells (Fig. 3A, Supplemental Fig. 1). Following anti-CD40 plus IL-4 stimulation, Tram^{−/−} B cells had normal to slightly decreased expression of Cy1 GLT and normal expression of Aicda and Iµ-Cy1 mature transcripts (Fig. 3B). These results suggest that the TRAM/TRIF pathway is important for optimal Aicda expression following LPS plus IL-4 stimulation and that the reduced ability to express Aicda underlies the lower expression of Iµ-Cy1 mature transcripts and decreased production of IgG1 by Tram^{−/−} and Trif^{−/−} B cells stimulated with LPS plus IL-4. The observation that LPS plus IL-4–stimulated Tram^{−/−} and Trif^{−/−} B cells had only a modest reduction in Cy1 GLT expression, but no detectable Ce GLT, following LPS plus IL-4 stimulation, demonstrates the specific requirement of the TRIF/TRAM pathway in the activation of Ce transcription by LPS plus IL-4.

Myd88^{−/−} B cells expressed normal amounts of Ce and Cy1 GLT following LPS plus IL-4 stimulation (Fig. 3A), indicating that MyD88 is not essential for the activation of the Ce and Cy1
loci by LPS plus IL-4. However, following LPS plus IL-4 stimulation, Myd88^{−/−} B cells transcribed reduced amounts of Aicda and had decreased expression of mature Im-Cε and Im-Cg₁ transcripts consistent with their reduced ability to secrete IgE and IgG1 (Figs. 1A, 1C, 3A). Myd88^{−/−} B cells had normal expression of Aicda following anti-CD40 plus IL-4 stimulation. Given that Cε and Cg₁GLT levels were normal in LPS plus IL-4–stimulated Myd88^{−/−} B cells, the decreased expression of mature Im-Cε and Im-Cg₁ transcripts and IgE and IgG secretion by these cells is most likely a result of decreased Aicda expression. The decreased Aicda expression in Myd88^{−/−} as well as Tram^{−/−} and Trif^{−/−} B cells may reflect their decreased viability and proliferation following stimulation with LPS plus IL-4. Following LPS plus IL-4 stimulation, expression of Cε and Cg₁ GLT, Aicda, and mature Im-Cε and Im-Cγ₁ transcripts was abolished in Myd88^{−/−}/Trif^{−/−} B cells, but they expressed all of these transcripts normally with anti-CD40 plus IL-4 stimulation (data not shown).

FIGURE 2. Proliferation and viability of Tram^{−/−}, Trif^{−/−}, Myd88^{−/−}, and WT B cells stimulated with LPS plus IL-4 and anti-CD40 plus IL-4. (A and B) Proliferation was assessed by ³H-thymidine incorporation into DNA after 3 d in culture (A). Proliferation was also measured using dilution of a cell-labeling dye (Cell Trace Violet) after 6 d in culture (B). (C) Survival was measured by flow cytometric analysis of annexin V[−]PI[−] Tram^{−/−}, Myd88^{−/−}, and WT B cells. Columns and bars represent mean ± SD normalized to WT of three independent experiments. *p < 0.05, **p < 0.01.

TRIF is important for sustained NF-κB activation in LPS plus IL-4–stimulated B cells

Cε GLT is induced by NF-κB and STAT6, which are activated, respectively, by LPS and IL-4. Both of these transcription factors reside in the cytoplasm of resting cells and translocate to the nucleus following stimulation. LPS causes a MyD88-dependent early phase and a TRAM/TRIF-dependent late phase of NF-κB activation in fibroblasts and macrophages (7, 21). We performed a kinetic analysis of nuclear translocation in primary B cells over the 15-h period following LPS plus IL-4 stimulation. Nuclear translocation of p65 in WT B cells was noted at 30 min, peaked at 3 h, and persisted at a lower level through 15 h (Fig. 4A, 4B). Trif^{−/−} B cells had a well-preserved early phase of p65 nuclear translocation compared with WT B cells with a similar signal at 30 min and 1 h. In contrast, the late phase of p65 nuclear translocation (3, 6, 15 h) was decreased in comparison with WT B cells (Fig. 4A, 4B). ChIP assays performed 15 h poststimulation with LPS plus IL-4 demonstrated reduced binding of p65 to the IgE...
promoter in Trif−/− B cells compared with WT B cells (Fig. 4C). The nuclear translocation defect in LPS plus IL-4–stimulated Trif−/− B cells was selective for p65 following stimulation with LPS plus IL-4, because STAT6 nuclear translocation was preserved over 15 h in Trif−/− B cells (Fig. 4A, 4B).

The finding that both NF-κB and STAT6 activation are sustained in normal B cells undergoing CSR to IgE is in agreement with the observation that robust transcription at the Ce locus occurs relatively late after stimulation with LPS plus IL-4 (Supplemental Fig. 1B) (22). It suggests that a lag period poststimulation is required for the Ce locus to become susceptible to activation by these two transcription factors. This lag time could be necessary to downregulate the expression of transcription factors that repress Ce germline transcription, such as Bcl6, Id2, and PU.1 (23, 24). Trif−/− and Myd88−/− B cells normally downregulated the expression of these transcription factors following LPS plus IL-4 stimulation (Supplemental Fig. 4), excluding a role for these factors in the failure of LPS plus IL-4 to activate the Ce locus in Trif−/− B cells.

Late inhibition of NF-κB partially inhibits Ce germline transcription and IgE isotype switching in WT LPS plus IL-4–stimulated B cells

We investigated whether IgE isotype switching was selectively dependent on sustained NF-κB activation. Addition of the NF-κB inhibitor JSH-23 (25) to WT B cells at 0, 7.5, and 15 h poststimulation with LPS plus IL-4 caused a drastic reduction in IgE secretion. Similarly, early addition of JSH-23 at 0 h led to a dramatic decrease in IgG1 secretion (Fig. 5A). However, IgG1 secretion rebounded and was normal when JSH-23 was added later at 7.5 or 15 h. Likewise, JSH-23 affected B cell proliferation when added at earlier time points, but much less so when added at 15 h (Fig. 5B). The effects on IgG1 secretion correlated with the decreased proliferation and Aicda mRNA expression seen when JSH-23 is added at 0 h (Fig. 5C). However, by the time JSH-23 is added at 15 h, the effects are primarily seen on the Ce locus with decreased Ce GLT and mature μ-CE transcripts (Fig. 5).

Discussion

Our results that are summarized in Table I demonstrate that TRIF is critical for TLR4-driven activation of the Ce locus and IgE isotype switching in IL-4–stimulated mouse B cells. B cells from Tram−− and Trif−/− mice failed to express Ce GLT and mature Ce transcripts and to secrete IgE in response to stimulation with LPS plus IL-4. In contrast, B cells from Myd88−/− mice expressed comparable amounts of Ce GLT as WT B cells in response to stimulation with LPS plus IL-4 but had diminished amounts of mature Ce transcripts and secreted reduced quantities of IgE that

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Proliferationa</th>
<th>AICDa</th>
<th>IgG1 Switching</th>
<th>IgE Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tram−− or Trif−/−</td>
<td>↓</td>
<td>↓</td>
<td>Normal to ↓</td>
<td>↓</td>
</tr>
<tr>
<td>Myd88−/−</td>
<td>↓</td>
<td>↓</td>
<td>Normal</td>
<td>↓</td>
</tr>
</tbody>
</table>

aProliferation was evaluated after 4–6 d of stimulation with LPS + IL-4.

bTranscript production was measured by RT-PCR after 4 d of stimulation with LPS + IL-4.

cIg secretion was measured after 6 d of stimulation with LPS + IL-4.
correlated with their reduced expression of Aicda. These findings strongly suggest that the reduction in IgE secretion by these B cells is a consequence of their reduced Aicda expression, because AICDA is essential for CSR (26).

B cells from Tram−/− and Trif−/− mice expressed a modest reduction in the levels of Cγ1 GLT following LPS plus IL-4 stimulation. The decreased expression of mature Cγ1 transcripts and reduced secretion of IgG1 by Tram−/− and Trif−/− B cells were most likely due to both the modest decrease in Cγ1 GLT and the decreased expression of Aicda in these B cells. B cells from MyD88−/− mice expressed normal levels of Cγ1 GLT following LPS plus IL-4 stimulation but had reduced expression of mature IκB-Cγ1 transcripts and reduced secretion of IgG1 by these B cells, both likely secondary to decreased Aicda expression by these cells. The regulation of Cγ1 GLT expression following stimulation with LPS is complex (4, 27, 28). A difference in the composition of the residual NF-κB complexes might explain the reduction in the levels of Cγ1 GLT observed in LPS stimulated in TRAM/TRIF-deficient B cells but not in LPS-stimulated MyD88-deficient B cells. Expression of Aicda is regulated by NF-κB (5). Decreased activation of NF-κB in B cells from Tram−/−, Trif−/−, and Myd88−/− mice most likely contributed to the decreased Aicda expression in these cells following stimulation with LPS and IL-4.

Both TRIF and MyD88 were important for optimal proliferation and survival of LPS plus IL-4-stimulated B cells. This is not surprising as NF-κB plays an important role in B cell proliferation (29, 30). The decreased proliferation and survival of B cells from Tram−/−, Trif−/−, and Myd88−/− mice most likely contribute to their reduced Aicda expression following stimulation with LPS plus IL-4. In the absence of both TRIF and MyD88, B cells completely failed to proliferate and secrete IgE and IgG1 following stimulation with LPS plus IL-4, again demonstrating the critical role NF-κB plays in B cell proliferation. These findings indicate that the TRAM/TRIF and MyD88 pathways play important but partially redundant roles in TLR4-driven B cell activation.

It has been shown that B cells must undergo five or more divisions to class switch to IgE (19). However, the failure of Trif−/− B cells to undergo IgE isotype switching in response to LPS plus IL-4 cannot be solely due to their defective cell division. A comparable defect in proliferation was found in Myd88−/− B cells, as measured both by thymidine incorporation and Cell Tracer Violet dye dilution. In contrast to Trif−/− B cells, which secreted no detectable IgE, Myd88−/− B cells secreted ∼50% of the IgE secreted by WT B cells. Late addition of the NF-κB inhibitor JSH-23 to WT B cells, to mimic the reduction in the late-phase activation of NF-κB found in Trif−/− B cells, strongly inhibited IgE production but had only a modest effect on proliferation. This supports the conclusion that the failure of Trif−/− B cells to secrete IgE in response to stimulation with LPS plus IL-4 is not solely due to their defective proliferation.

LPS activates NF-κB, whereas IL-4 activates STAT6 (11, 12). The two transcription factors synergize to drive Cε GLT expression in both human and mouse B cells (14, 31). In LPS-stimulated mouse B cells, a NF-κB complex containing p50 interacts with a c/EBP family member to bind to a NF-κB site in the Cε promoter (32). LPS stimulation of mouse B cells has been shown to result in the formation of nuclear NF-κB complexes that consist of p50:p50 dimers and p50:p65 dimers with negligible amounts of p50:RelB (33). Studies with knockout mice indicate that p50 is essential for IgE isotype switching, whereas RelB is not required (29, 30). Because p50:p50 dimers are inactive, it is likely that p50:p65 complexes induced by LPS are important for driving Cε GLT transcription in mouse B cells, as has been demonstrated for LPS-driven Cγ1 germline transcription in these cells (28). Trif−/−
B cells had a preserved early phase of NF-κB p65 nuclear translocation compared with WT B cells. However, in contrast to WT B cells, they failed to sustain NF-κB p65 nuclear translocation beyond 3 h. ChIP assays, performed 15 h poststimulation with LPS plus IL-4, demonstrated reduced binding of p65 to the IκB promoter in Trif−/− B cells compared with WT B cells. IL-4–driven STAT6 nuclear translocation was normal in Trif−/− B cells, consistent with their intact IgE production in response to anti-CD40 plus IL-4 stimulation. These findings strongly suggest that the failure of Trif−/− B cells to activate the C locus in response to LPS plus IL-4 stimulation is due to their inability to sustain NF-κB activation.

Further support for the above hypothesis was provided by experiments using timed addition of the NF-κB inhibitor JSH-23. Addition of JSH-23, 15 h after LPS plus IL-4 stimulation, selectively blocked Cε GLT expression and IgE secretion in WT B cells, with minimal effect on Cγ1 GLT expression. Thus, taken together, our results suggest that TRIF-dependent sustained activation of NF-κB is essential for the transcriptional activation of the Cε locus in LPS plus IL-4–stimulated B cells. It is of note that IgE isotype switching requires sustained exposure of the B cells to IL-4 for at least 72 h, suggesting that sustained activation of STAT6 may also be necessary for transcription at the Cε locus (34). Sustained activation of both NF-κB and STAT6 may be required because a lag period may be needed for the Cε locus to become susceptible for activation. This lag period could be explained by the need to downregulate the expression of the transcription factors Bcl6, Id2, and PU.1 that inhibit transcription of the Cε locus (23, 24).

TLR3 has been reported to mediate isotype switching to IgG1 by tonsillar B cells. Although a dominant-negative TRIF inhibited TLR3-driven NF-κB activation in these cells, the role of TRIF in isotype switching was not formally demonstrated (35). TRIF has been shown recently to be important for TLR4-dependent IgG production in response to immunization with the autoantigen histidyl-trna synthetase (36) and for the IgG Ab response to vaccination with a peptide presented with monophosphoryl lipid A on liposomes (37). The role we demonstrated for TRIF in LPS-driven IgE isotype switching is novel and has potential implications for IgE-mediated allergic responses elicited by mechanisms that may involve TRIF activation.

Disclosures

The authors have no financial conflicts of interest.

References

13. Delphin, S., and J. Stavnezer. 1995. Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter pro...

Supplemental Figure 1. Molecular events involved in IgE and IgG1 CSR in Trif^{−/−} and WT mice after stimulation with LPS+IL-4. A. Expression of Cε GLT (Iε-ε), mature Cε (Iμ-Cε), Cy1 GLT (Iγ1-Cγ1), mature Cy1 (Iμ-Cγ1) transcripts, and Aicda and β2m mRNA in WT and Trif^{−/−} cells B in response to stimulation with LPS+IL-4 for 4 days. Samples were serially diluted 1:2 to assess that amplification was in the linear range. B. B cells from Trif^{−/−} and WT mice were stimulated with LPS+IL-4 and harvested on day 0, 1, 2, 3 and 4 for RNA isolation and RT-PCR of the Cε GLT and Cy1 GLT. In both panels, 42 cycles were used to amplify the Cε GLT and mature Cε transcripts, while 30 cycles were used for amplification of the Cy1 GLT, mature γ1 transcript, Aicda, and β2m mRNA.
Supplemental Figure 2. IgE and IgG1 secretion and proliferation of Trif−/−/MyD88−/− B cells in response to LPS+IL4. A. Naïve B cells from Trif−/−/MyD88−/− and WT mice were stimulated with LPS+IL-4 for 4 days. IgE and IgG1 secretion were measured by ELISA. B. Proliferation was measured at 3 days by ³H-thymidine incorporation into DNA. Results represent the mean+S.D. to WT of 3 independent experiments.****p<0.0001
Supplemental Figure 3. Proliferation of Trif⁻/⁻ and WT B cells stimulated with LPS+IL-4 and anti-CD40+IL-4. B cells were loaded with the cell labeling dye Cell Tracer Violet. Dye dilution was analyzed by flow cytometry 4 days after the cells were stimulated with LPS+IL-4 or anti-CD40+IL-4.
Supplemental Figure 4. Transcription factor down regulation in \({\text{Trif}^{/-}}, {\text{Myd88}^{/-}}, \) and WT mice and LPS+IL-4 driven IgE secretion by B cells from \({\text{Irf3}^{/-}}/\text{Irf7}^{/-} \) mice. Expression of Bcl6, Id2, and PU.1 transcripts in B cells from \({\text{Trif}^{/-}}, {\text{Myd88}^{/-}}, \) and WT mice after stimulation with LPS+IL-4 was measured using real-time PCR. Expression was normalized to \(\beta 2m \) transcript expression for each sample. Analysis of the curves by ANOVA showed no significant difference. Symbols and bars represent the mean \(\pm S.D. \) of 3 independent experiments.