Cutting Edge: *Pseudomonas aeruginosa* Abolishes Established Lung Transplant Tolerance by Stimulating B7 Expression on Neutrophils

Sumiharu Yamamoto, Ruben G. Nava, Jihong Zhu, Howard J. Huang, Mohsen Ibrahim, Thalachallour Mohanakumar, Mark J. Miller, Alexander S. Krupnick, Daniel Kreisel and Andrew E. Gelman

J Immunol published online 26 September 2012
http://www.jimmunol.org/content/early/2012/09/26/jimmunol.1201683

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/09/26/jimmunol.1201683.DC1

Why *The JI*? Submit online.
- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: *Pseudomonas aeruginosa* Abolishes Established Lung Transplant Tolerance by Stimulating B7 Expression on Neutrophils

Sumiharu Yamamoto,* Ruben G. Nava,* Jihong Zhu,* Howard J. Huang,† Mohsen Ibrahim,*‡ Thalachallour Mohanakumar,*§ Mark J. Miller,* Alexander S. Krupnick,* Daniel Kreisel,*§ and Andrew E. Gelman*§

The mechanisms that link bacterial infection to solid organ rejection remain unclear. In this study, we show that following the establishment of lung allograft acceptance in mice, *Pseudomonas aeruginosa* airway infection induces a G-CSF–dependent neutrophilia that stimulates acute rejection. Graft-infiltrating neutrophils sharply upregulate the B7 molecules CD80 and CD86, but they do not express CD40 or MHC class II in response to *P. aeruginosa* infection. Neutrophil B7 promotes naïve CD4+ T cell activation and intragraft IL-2, IFN-γ, and IL-17+ T lymphocyte accumulation. Intravital two-photon microscopy reveals direct interactions between neutrophils and CD4+ T cells within pulmonary allografts. Importantly, lung rejection in *P. aeruginosa*-infected recipients is triggered by CD80/86 on neutrophils and can be prevented by B7 blockade without affecting clearance of this pathogen. These data show that neutrophils enhance T cell activation through B7 trans-costimulation and suggest that inhibiting neutrophil-mediated alloimmunity can be accomplished without compromising bacterial immune surveillance. *The Journal of Immunology*, 2012, 189: 000–000.

In human lung recipients, posttransplant airway colonization with *Pseudomonas aeruginosa* is associated with graft rejection (1). Airway neutrophilia that often accompanies such infections has also been linked to both chronic and acute lung allograft rejection (2). G-CSF is a critical mediator of neutrophil mobilization in *P. aeruginosa*-infected lungs (3). Accordingly, we reported that G-CSF–driven granulopoiesis maintains acceptance for *P. aeruginosa* cell; hkPA, heat-killed *P. aeruginosa* strain P01, live (*P. aeruginosa*), or heat-killed dose equivalent (heat-killed *P. aeruginosa* [hkPA]; 65°C for 1 h) was resuspended in 50 μl normal saline for airway administration. A total of 200 μg G-CSF Abs (PeproTech) or 250 μg clone 1A8 Ly6G (Bio X Cell) neutrophil-depleting Abs was administered i.v. 4 h prior to *P. aeruginosa* inoculation. Neutrophils were purified by negative selection, as previously described (4). A total of 107 neutrophils was injected i.v. into *P. aeruginosa*-infected G-CSF Ab-treated lung recipients once a day for up to 3 d.

Rejection assessment
H&E sections of allograft tissue from uninfected and infected recipients were screened in a double-blind fashion for the presentation of dense perivascular infiltrates and scored by the criteria set forth by the International Society for Immunopathology. The online version of this article contains supplemental material. Abbreviations used in this article: BALF, bronchoalveolar lavage fluid; DC, dendritic cell; hkPA, heat-killed *Pseudomonas aeruginosa*; POD, postoperative day.

Address correspondence and reprint requests to Dr. Andrew E. Gelman, Asst. Prof. of Surgery, Pathology, and Immunology, Campus Box 8234, 660 South Euclid Avenue, Washington University, St. Louis, MO 63110-1013. E-mail address: gelmana@wudosis.wustl.edu.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12/1600.
Heart and Lung Transplantation Working Lung Rejection Study Group in 2007 (11).

Two-photon microscopy

On POD 7, BALB/c → B6 CD11c-EYFP Ly6M-GFP mice received *P. aeruginosa* and 5 × 10^6 CellTracker Red (Invitrogen)-labeled B6 CD4^+ T cells. On POD 8, time-lapse imaging was performed with a custom-built two-photon microscope running ImageWarp acquisition software (A&B Software) (5). For time-lapse imaging of neutrophil–CD4^+ T cell interactions in the lung tissue, we averaged 15 video-rate frames (0.5 s/slice).

T cell analysis

Lung tissue digests were performed, and T cell intracellular expression of IFN-γ, IL-17A, and IL-2 was measured, as previously described (4, 12). IL-2 culture production was measured by ELISA (eBioscience). Intragraft CD4^+ T cells were isolated with anti-CD4 beads (Miltenyi Biotec) and cultured with BALB/c bone marrow-derived dendritic cells (DCs) for 36 h. Splenic naive CD4^+ T cells were isolated by flow cytometric sort on a CD90.2^+CD25^−CD62L^hiCD44^loCD4^+ gate. Alloantigen-specific CD4^+ T cell responses were generated with irradiated BALB/c T cell-depleted splenocytes for 36 h, and IL-17 and IFN-γ were determined by FACS-cytokine secretion assay (Miltenyi Biotec).

Neutrophil assessment

Neutrophils were identified as Ly6G^hiGr1^hiCD11b^+CD115^− cells by FACS and quantified by multiplying the percentage abundance by the total cell count in the bronchoalveolar lavage fluid (BALF), as previously described (4). Neutrophils were stained with Abs (BD Pharmingen) to CD80 (16-10A1), CD86 (AF6-120.1), CD40 (3/23), and IAb^+^ (GL1).

Statistical analysis

Data were analyzed using GraphPad Prism, version 5.0, and the results are presented as mean ± SEM. An unpaired two-tailed Student t test was used to evaluate pairs of means for significance. The p values < 0.05 were considered significant.

Results and Discussion

P. aeruginosa infection prevents established lung tolerance

Based on clinical reports that *P. aeruginosa* colonization shortens human pulmonary allograft survival (1), we asked whether this infection abrogates established tolerance in a model of immunosuppression-mediated BALB/c → B6 lung acceptance (4, 10). On POD 7, the lung recipients received 2.5 × 10^6 CFU of *P. aeruginosa* intratracheally, and allograft histology, T lymphocyte intragraft accumulation, and neutrophilia were analyzed for up to 3 wk postinfection (Fig. 1A, 1B). Compared with saline-treated control recipients, there was progressive histological evidence of lymphocytic vascular rejection and the accumulation of graft-
infiltrating IL-17⁺CD4⁺, IFN-γ⁺CD4⁺, and IFN-γ⁺CD8⁺ T cells in *P. aeruginosa*-infected recipients. Additionally, lung rejection was associated with more alloantigen-specific Th1 and Th17 cells compared with saline-treated lung recipients (Fig. 1C). Finally, allograft rejection could be induced by *P. aeruginosa* infection in recipients that had accepted their lungs for >100 d, suggesting the abrogation of regulatory mechanisms that also promote long-term acceptance (Supplemental Fig. 1A).

P. aeruginosa infection also stimulated high levels of lung neutrophilia (Fig. 1D), which resolved only partially despite the rapid clearance of this pathogen from lung airways (Fig. 1E). To assess the role of neutrophilia in lung survival, we used several approaches to prevent neutrophil graft accumulation in hkPA-treated lung recipients (Fig. 1F); live strain administration is lethal to neutrophil-depleted lung recipients because of their inability to clear this infection (13). Importantly, hkPA induced patterns of allograft rejection, as well as as intragraft Th1 and Th17 cell accumulation, comparable to the live strain (Supplemental Fig. 1B). Inhibiting neutrophil accumulation with either G-CSF Ab blockade or Ly6G Ab-mediated neutrophil depletion led to similar reductions in intragraft Th1 and Th17 cells, as well as protection against lung allograft rejection (Fig. 1G, 1H). Moreover, allograft survival was also maintained in CD11b⁻⁺ recipients, a critical mediator of neutrophil trafficking into the lung (14). Therefore, these data collectively show that *P. aeruginosa* initiates a pulmonary neutrophilia that prevents established allograft tolerance.

Neutrophil B7 trans-costimulation promotes CD4⁺ T cell activation

Reports of neutrophils acquiring the characteristics of APCs in both humans (7) and mice (6) led us to investigate whether these cells could directly promote naive CD4⁺ T cell activation. Although neutrophils did not express MHC class II or CD40 in *P. aeruginosa*-infected lung recipients, we detected high levels of CD80 and CD86 on these cells (Fig. 2A), suggesting CD4⁺ T cell activation potential through B7 trans-costimulation. To investigate this possibility, we cocultured neutrophils from *P. aeruginosa*-infected mice with naive CFSE-labeled CD4⁺ T cells in the presence or absence of latex beads coupled to CD3 Abs and analyzed IL-2 expression and proliferation (Fig. 2B, 2C). In the absence of CD3 beads, neutrophils from *P. aeruginosa*-infected mice were unable to stimulate CD4⁺ T cell IL-2 expression or proliferation, consistent with a lack of MHC class II expression on these cells. However, in the presence of CD3 beads, CD4⁺ T cell IL-2 expression and proliferation were significantly augmented by neutrophils from *P. aeruginosa*-infected mice compared with neutrophils from either uninfected or *P. aeruginosa*-infected CD80⁻⁻/⁻/86⁻⁻ mice. Consistent with these observations, B7 blockade mediated by CTLA4Ig markedly reduced the ability of neutrophils from *P. aeruginosa*-infected mice to enhance CD4⁺ T cell IL-2 expression and proliferation to levels that were comparable to cocultures with neutrophils from *P. aeruginosa*-infected CD80⁻⁻/⁻/86⁻⁻ mice. Collectively, these data show that neutrophil B7 trans-costimulation enhances naive CD4⁺ T cell activation.

Neutrophil B7 prevents established lung allograft tolerance

We next asked whether neutrophil B7 stimulated CD4⁺ T cell activation in vivo. To this end, we sought to normalize for APC costimulatory molecule expression by adoptively transferring neutrophils isolated from either B6 or B6 CD80⁻⁻/⁻/86⁻⁻ mice into *P. aeruginosa*-infected BALB/c → B6 lung recipients that were also treated with G-CSF Abs to ablate endogenous granulocyte mobilization (Fig. 3A). Strikingly, 36 h postinfection, the percentages of intragraft IL-2⁺ and IFN-γ⁺CD4⁺ T cells increased to levels nearly equivalent to those in control Ig-treated *P. aeruginosa*-infected lung recipients. Also, neutrophil B7 significantly augmented intragraft IL-17⁺CD4⁺ and IFN-γ⁺CD8⁺ T cell accumulation. We then analyzed the effect of neutrophil B7 on allograft tolerance by continuing adoptive transfers of B6 or CD80⁻⁻/⁻/86⁻⁻ neutrophils for two additional days into G-CSF Ab-treated *P. aeruginosa*-infected lung recipients (Fig. 3B). CD80⁻⁻/⁻/CD86⁻⁻ neutrophils had little impact on allograft inflammation 3 wk postinfection, whereas B6 neutrophil recipients

FIGURE 2. Neutrophil B7 directly enhances naive CD4⁺ T cell activation. (A) BALF neutrophils from uninfected (black line) or *P. aeruginosa*-infected (red line) BALB/c → B6 recipients were stained with indicated Abs or isotype (shaded graph) Abs (n = 4). (B) IL-2 levels from naive CD4⁺ T cells cultured with neutrophils from *P. aeruginosa*-infected mice (B6(PA)) or stimulated by CD3 beads in the absence (no PMN) or presence of neutrophils from uninfected mice (B6), B6(PA) mice, *P. aeruginosa*-infected CD80⁻⁻/⁻/86⁻⁻/⁻ mice (CD80⁻⁻/⁻/86⁻⁻/⁻ (PA)), or B6(PA) and 15 μg/ml CTLA4Ig mice. (C) CFSE-labeled naive CD4⁺ T cells cultured as in (B) for 72 h and analyzed for responder frequency; mitotic divisions are shown below the x ordinate (n = 4).
CD4+ T cells from uninfected BALB/c mice (DC + B6 PMN), or cocultured with DCs separated from B6 neutrophils by Transwells (DC II B6 PMN) (Fig. 3D). On POD 7, lung recipients received P. aeruginosa along with 200 μg of control Ig, CD154, or CTLA4Ig and were analyzed 3 wk later for H&E graft histology (n = 3) (E) (original magnification ×100) and intragraft T lymphocyte accumulation (n = 4) of BALB/c → B6 lung recipients 3 wk after receiving PA and G-CSF Abs, as well as either B6 or CD80−/−86−/− neutrophils. How-ever, when B6 neutrophils were separated by Transwells from DC-stimulated CD4+ T cells, IL-2 expression decreased sharply, underscoring the requirement for neutrophils to have direct contact with intragraft T cells to promote alloimmunity.

In murine transplantation models (16) and human kidney recipients (17), B7-CD28 blockade strategies have been used to promote allograft acceptance, but their use to maintain established tolerance in infected recipients has not been reported. Therefore, we asked whether either CD154 Ab or CTLA4Ig administration at the time of P. aeruginosa infection could promote established lung tolerance in B6 lung allograft recipients (Fig. 3E). CD154 Ab treatment did not prevent acute rejection consistent with the absence of CD40 expression on neutrophils in P. aeruginosa-infected lung recipients. In contrast, CTLA4Ig-treated recipients maintained lung survival and had patterns of intragraft Th1 and Th17 cell abundance that were comparable with uninfected lung recipients (Fig. 3F versus Fig. 1B). Also, CTLA4Ig treatment did not affect airway neutrophil infiltration or P. aeruginosa infection clearance, indicating that targeting B7 function does not impair pulmonary bacterial immune surveillance (Fig. 3G, 3H).

In summary, we showed that neutrophil B7 expression induced by P. aeruginosa infection plays a critical role in preventing established lung tolerance through promoting T cell trans-costimulation. In light of previous work that showed the importance of TLRs in regulating organ tolerance (18, 19), our data provide additional insight into innate immune responses to infected allografts. Because pulmonary allografts are especially vulnerable to infection given the organ’s direct exposure to the external environment, a better understanding of how neutrophils regulate alloimmunity will be important for the development of more effective immunotherapeutic strategies for lung recipients.
Disclosures
The authors have no financial conflicts of interest.

References