The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity

J Immunol 2018; 201:1343-1351; doi: 10.4049/jimmunol.1800565
http://www.jimmunol.org/content/201/5/1343

References: This article cites 102 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/201/5/1343.full#ref-list-1

Why The JI? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription: Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions: Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts: Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity

H. Luke Anderson,* Igor E. Brodsky,†‡ and Nilam S. Mangalmurti†‡§,¶

The field of red cell biology is undergoing a quiet revolution. Long assumed to be inert oxygen carriers, RBCs are emerging as important modulators of the innate immune response. Erythrocytes bind and scavenge chemokines, nucleic acids, and pathogens in circulation. Depending on the conditions of the microenvironment, erythrocytes may either promote immune activation or maintain immune quiescence. We examine erythrocyte immune function through a comparative and evolutionary lens, as this framework may offer perspective into newly recognized roles of human RBCs. Next, we review the known immune roles of human RBCs and discuss their activity in the context of sepsis where erythrocyte function may prove important to disease pathogenesis. Given the limited success of immunomodulatory therapies in treating inflammatory diseases, we propose that the immunologic function of RBCs provides an understudied and potentially rich area of research that may yield novel insights into mechanisms of immune regulation. *The Journal of Immunology, 2018, 201: 1343–1351.

Erythrocytes are the most abundant cell type in the human body, numbering between 20 and 30 trillion and accounting for nearly 70% of the total cell count in the average adult (1). Erythropoiesis begins with the differentiation of multipotent hematopoietic stem cells in the bone marrow, which then give rise to erythroid-committed precursors. In the final stages of the process, known as terminal erythropoiesis, the nucleus and other organelles are extruded. These enucleated reticulocytes are then released into the bloodstream to complete their maturation process (2). After a lifespan of ~120 d, RBCs are cleared by macrophages in the spleen and liver (3).

Importantly, mammals are the only vertebrates whose erythrocytes are enucleated in their mature state. The extrusion of the nucleus and other organelles occurs through a series of complex stages, including chromatid condensation, budding, and mitophagy (2, 4). Loss of the erythroid nucleus is thought to have facilitated the evolution of mammalian endothermy, as it allowed erythrocytes to further specialize for efficient gas exchange (4).

In the classical literature, human erythrocytes have long been typecast as mere oxygen transporters. However, mounting evidence suggests that these cells also play an important role in the innate immune system (5–7). From an evolutionary perspective, the involvement of human erythrocytes in innate immunity should not be surprising, as the nucleated erythrocytes of birds, amphibians, and fishes actively participate in the immune response via production of cytokine-like factors, upregulation of viral response genes, and sequestration of pathogens through surface binding or phagocytosis (8–20). Despite their deletion of organelles during erythropoiesis and subsequent inability to carry out transcription and translation, mammalian erythrocytes retain the ability to interact with endogenous and exogenous inflammatory molecules in the blood. Research over the past several decades demonstrates that, like their evolutionary counterparts, these cells retain the ability to bind and interact with a variety of inflammatory molecules, including chemokines, nucleic acids, and pathogens, thereby regulating and modulating immune responses. Internal components of erythrocytes such as hemoglobin and heme are also formidable facets of innate immunity, capable of generating antimicrobial reactive oxygen species (ROS) to defend against invading hemolytic microbes as well as promoting pathologic inflammatory and autoimmune responses. Finally, the involvement of erythrocytes in host–pathogen interactions may render them crucially important in the context of sepsis and septic shock, a state of dysregulated host response to infection where the body is overwhelmed with endotoxins and other inflammatory mediators. A deeper understanding of erythrocyte function will likely be vital to elucidating the ways in which these cells contribute to the pathogenesis of a variety of acute and chronic diseases.

Evolutionary perspectives

Erythrocyte origins. Throughout the course of evolution, the cellular components of the blood have undergone functional evolution and specialization. The loss of the erythroid nucleus is thought to have facilitated the evolution of mammalian endothermy, as it allowed erythrocytes to further specialize for efficient gas exchange (4). The evolutionary origins of the mammalian erythrocyte have been the subject of much speculation and debate. Early hypotheses suggested that the mammalian erythrocyte was derived from the ancestral amphibian erythrocyte, which lacked a nucleus and other organelles (1). However, more recent evidence suggests that the mammalian erythrocyte is more closely related to the avian erythrocyte, which retains a nucleus and other organelles (21). This conclusion is supported by the finding that avian erythrocytes retain the ability to bind and interact with a variety of inflammatory molecules, including chemokines, nucleic acids, and pathogens, thereby regulating and modulating immune responses. Internal components of avian erythrocytes such as hemoglobin and heme are also formidable facets of innate immunity, capable of generating antimicrobial reactive oxygen species (ROS) to defend against invading hemolytic microbes as well as promoting pathologic inflammatory and autoimmune responses. Finally, the involvement of avian erythrocytes in host–pathogen interactions may render them crucially important in the context of sepsis and septic shock, a state of dysregulated host response to infection where the body is overwhelmed with endotoxins and other inflammatory mediators. A deeper understanding of avian erythrocyte function will likely be vital to elucidating the ways in which these cells contribute to the pathogenesis of a variety of acute and chronic diseases.

Received for publication April 20, 2018. Accepted for publication May 16, 2018.

This work was supported by National Institutes of Health Award HL126788 (to N.S.M.).

Address correspondence and reprint requests to Dr. Nilam S. Mangalmurti, Perelman School of Medicine, University of Pennsylvania, 220 Steimler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104. E-mail address: nspatel@pennmedicine.upenn.edu

Abbreviations used in this article: DAMP, damage-associated molecular pattern; DARC, Duffy Ag receptor for chemokines; GYPA, glycophorin A; HO-1, heme oxygenase-1; mtDNA, mitochondrial DNA; NRBC, nucleated RBC; ROS, reactive oxygen species.

Copyright © 2018 by The American Association of Immunologists, Inc. 0002-1767/18/$35.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1800565
specialization. The earliest blood cells are thought to have been relative generalists involved in both phagocytosis and nutrient delivery. However, they did not serve a function in oxygen transport (21, 22). Prior to the emergence of circulatory systems, small invertebrates accomplished tissue oxygenation by simple diffusion alone; this mechanism is still observed today in primitive animals such as the sponges, cnidarians, and flatworms (21, 23). Later, the emergence of larger body plans necessitated more efficient oxygen delivery mechanisms, leading to the evolution of increasingly elaborate circulatory systems (23) and a variety of oxygen-carrying respiratory pigments (24, 25). Hemoglobin appears to have arisen first among them, followed by the hemerythins, the molluscan hemocyanins, and eventually the arthropod hemocyanins (25). Although hemoglobin likely began as a free-floating protein, the emergence of cells to encapsulate the pigment (i.e., erythrocytes) appears to have occurred soon after (24, 25). All modern vertebrates [with the notable exception of white-blooded ice fish from the family Channichthyidae (26)] accomplish oxygen delivery by means of circulating hemoglobin-rich erythrocytes (24). Similar cells are sporadically observed in numerous invertebrate groups as well, including the echinoderms, phoronids, annelids, nemerteans, and mollusks (25, 27). Erythrocytes may have arisen separately in multiple animal lineages or once prior to the divergence of the animal phyla, although the precise evolutionary history remains unresolved (21, 22, 27).

Erythrocytes of nonmammalian vertebrates. The erythrocytes of nonmammalian vertebrates are nucleated, save rare exceptions in the fishes (28) and amphibians (29, 30). Furthermore, like many other hematopoietic cells, nonmammalian erythrocytes directly participate in the immune response. In fishes (8, 16), amphibians (19), and birds (9, 13), erythrocytes actively undergo transcription and protein production in response to environmental cues. Specifically, Atlantic salmon (Salmo salar L.) erythrocytes increase transcription of Ag-presenting and viral response genes during piscine orthoreovirus infection and upregulate IFN-α in response to infectious salmon anemia virus, contributing to host resistance (10, 11). Erythrocytes in striped eel (Oplegnathus fasciatus) appear to coordinate immune function with leukocytes, upregulating an additional 338 genes when incubated with leukocytes and LPS compared with LPS alone (18). Furthermore, both chicken and trout erythrocytes release cytokine-like factors following exposure to fungal Ags (8, 9) and express functional pattern recognition receptors (including TLR and peptidoglycan recognition proteins) on their surfaces (14, 31). Remarkably, trout erythrocytes have even been observed engaging in phagocytosis of pathogenic yeast (Candida albicans) (12).

Finally, the erythrocytes of trout and chickens form cellular aggregations known as rosettes, which serve to expedite pathogen destruction by macrophages (12, 17). The rosetting behavior of piscine and avian erythrocytes stands in stark contrast to that of human erythrocytes, which is notoriously observed in severe cases of Plasmodium falciparum malaria. Rosetting in this context is characterized not as a defense mechanism of the human host but rather as a virulence mechanism of the malarial parasite (20). Infected erythrocytes adhering to uninfected erythrocytes and endothelial cells result in a sequestration of blood cells in affected organs, which, particularly when localized in cerebral tissue, is associated with mortality (20). It is possible that this rosetting behavior was co-opted by the malarial parasite or that it is the maladaptive consequence of an evolutionarily conserved mechanism of pathogen sequestration.

Mammalian erythrocytes. Mammals are the only vertebrates with enucleated erythrocytes under homeostatic conditions (Fig. 1). Intriguingly, however, nucleated erythrocytes are sometimes observed in humans during pathologic states, constituting a striking exception and suggesting that enucleated erythrocytes are not an obligate feature of mammalian physiology (32–34). Mammalian erythrocytes also lack endoplasmic reticula, ribosomes, and mitochondria, as early developmental processes expunge these typically vital organelles (2). It has been hypothesized that the deletion of nuclei and organelles in mature erythrocytes may have allowed for increased surface area-to-volume ratio, facilitating increased gas exchange efficiency (35–37). Moreover, the feature allowed for elevated cellular hemoglobin capacity (4), increased pliability, and an improved ability to traverse small capillaries (15, 37).

It is possible that erythrocyte enucleation evolved in response to a reduction in Earth’s atmospheric oxygen concentrations (35) or because of the increased metabolic demands of endothermy (37). In line with the latter hypothesis, erythrocytes are comparatively larger in ectothermic, phylogenetically lower organisms like fishes and herptiles (36, 38). The eradication of mitochondria in mammalian erythrocytes may also have reduced production of damaging ROS (39). This is an attractive hypothesis given that human erythrocytes generate extensive free radicals even without mitochondria, necessitating their ample arsenal of protective antioxidant molecules and enzymes (40). However, avian erythrocytes exhibit lower levels of blood oxidative stress and similar cellular hemoglobin content in comparison with mammals, despite their retaining both functional mitochondria and nuclei (4, 41), indicating that the presence of mitochondria and nuclei in erythrocytes is not necessarily a barrier to endothermy. Because endothermy arose separately in the avian and mammalian lineages, it is perhaps to be expected that alternative suites of physiologic adaptations accompanied it.

Regardless of the specific pressures driving the loss of organelles in mammalian erythrocytes, the change appears to have been an evolutionary compromise: opting for greater respiratory specialization, the forfeiture of key cellular components rendered mammalian erythrocytes more passive actors than those of other vertebrates. Without ribosomes or a genome, mammalian erythrocytes are incapable of signal transduction, gene transcription, or new protein synthesis and are therefore unable to contribute to the immune response via de novo production of immunologically active signaling molecules. However, there is significant evidence that mammalian erythrocytes remain key contributors to innate immunity. Despite their loss of internal organelles, mammalian erythrocytes express a large number of cell surface receptors that mediate their interactions with both endogenous and exogenous agents in the blood (42), providing them with an extensive capacity for scavenging or sequestration of circulating molecules that impact immune function.

Hemoglobin and heme. Among the respiratory pigments, hemoglobin is the most ancient (25). Circulating hemoglobin appears to have arisen from the tissue-localized hemoglobins of primitive animals, such as the turbellarian platyhelmints (25). Although oxygen carriage is its primary function, hemoglobin and free heme also participate in the innate immune response.
Because hemoglobin provides a rich source of iron for bacterial metabolism (43–45), microbial invaders have evolved both hemolytic toxins and high-affinity scavenging systems to access it (46–48). In response, host hemoglobin provides a counterattack: activated by the extracellular proteases of virulent bacteria, the peptide emits bactericidal ROS in the microbial vicinity (49). Studies show that both the α and β subunits of hemoglobin contain high-affinity binding sites for LPS, the immune-stimulating endotoxin present in the membranes of Gram-negative bacteria. When LPS binds to hemoglobin, it stimulates the redox activity of the peptide and leads to the production of antimicrobial free radicals (50). Additionally, the presence of hemoglobin has been shown to amplify macrophage cytokine production in the presence of LPS as well as enhance macrophage binding of LPS (51). Finally, micromolar concentrations of hemoglobin fragments are sufficient to inhibit the growth of yeast and bacteria (both Gram-positive and Gram-negative) via ROS production, while demonstrating no toxic effects on human blood cells (52).

The immunologic functions of respiratory globins are widespread across the animal kingdom. Invertebrate horseshoe crabs (Tachypleus tridentatus) contain blue-tinted blood rich in hemocyanin, a cell-free protein that carries oxygen throughout the blood of many mollusks and arthropods. In these animals, hemocyanin similarly generates ROS in response to microbial challenge (49, 53). The antimicrobial properties of globins are so universal that the cattle tick (Boophilus microplus) can appropriate fragments of its host’s hemoglobin for use in its own gut (54). Beyond their function in gas exchange, the utility of respiratory pigments as innate immune elements has been realized at multiple points throughout evolution (12, 25, 53).

Although hemoglobin may confer antimicrobial protection under homeostatic conditions, research indicates that it has the opposite effect during pathologic states. Particularly when the system is overwhelmed with endotoxin, as is the case in severe sepsis, elevated levels of cell-free hemoglobin are associated with increased mortality (55, 56). Interestingly, i.p. injection of globin had protective effects on endotoxemic mice (55), whereas i.v. injection of hemoglobin into endotoxemic mice dramatically increased rates of mortality (56). And although globin alone reduces macrophage TNF production in the presence of LPS, thereby dampening immune response to endotoxin, hemoglobin actually stimulates macrophage TNF production and triggers the release of proinflammatory cytokines under the same conditions (55). The conflicting nature of the hemoglobin literature appears to be due to the dualistic properties of the hemoglobin molecule itself in which, broadly speaking, globins attenuate immune response (55, 57), whereas heme exacerbates it (58, 59). These effects are likely attributable to the ability of globin to scavenge excess free heme during endotoxemia, resulting in attenuated immune activation. In contrast, if heme is inflammatory, injecting hemoglobin could serve to exacerbate this effect.
inflammatory responses.

Human erythrocytes and the innate immune system

Table I. The dualistic nature of RBCs in innate immune function, and its relevance to human disease states

<table>
<thead>
<tr>
<th>RBC Component</th>
<th>Innate Immune Function</th>
<th>Promotes Immune Response</th>
<th>Maintains Immune Quiescence</th>
<th>Relevant Disease States</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARC</td>
<td>Binds chemokines (6, 7, 63)</td>
<td>Maintains chemokine gradient (64)</td>
<td>Scavenges and sequesters chemokines (7)</td>
<td>Critical illness (103)</td>
</tr>
<tr>
<td></td>
<td>Binds pathogen (83, 91)</td>
<td>Serves as entry point for P. falciparum (83)</td>
<td></td>
<td>Malaria (83–85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binds HIV-1 (91)</td>
<td></td>
<td>HIV (91)</td>
</tr>
<tr>
<td>TLR9</td>
<td>Binds nucleic acids (5)</td>
<td>?* Presents mtDNA to immune or endothelial cells (5)</td>
<td>Scavenges and sequesters inflammatory nucleic acids (5)</td>
<td>Trauma (5)</td>
</tr>
<tr>
<td>GYPa</td>
<td>Binds pathogen (42, 86, 87)</td>
<td>Results in RBC crenation (5)</td>
<td></td>
<td>Malaria (86, 87)</td>
</tr>
<tr>
<td>Heme/hemoglobin</td>
<td>Generates ROS (49, 50)</td>
<td>?* Facilitates trans-infections</td>
<td>Facilitates pathogen destruction via decoy receptor binding (42)</td>
<td>Sepsis (58)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serves as attachment site for P. falciparum (86, 87)</td>
<td></td>
<td>Staphylococcus infection (46)</td>
</tr>
</tbody>
</table>

*The ? refers to speculated function.

Heme has also been characterized as a potent danger signal in vitro, capable of activating NF-κB–mediated expression of proinflammatory proteins (including IL-1 and TNF-α), generation of intracellular ROS, 100-fold increase in transcription of proinflammatory genes, and macrophage release of TNF-α and IL-1 (60). It has been suggested that free heme is unable to cause damage on its own but rather produces deleterious effects only in the presence of other immune modulators (61). However, others have demonstrated that free heme is an independent activator of TLR4 (62), stimulating secretion of TNF-α, ROS, and leukotriene B4 from macrophages (59, 62) and release of high mobility group box 1 (HMGB1) from hepatocyte nuclei (58).

Human erythrocytes and the innate immune system

Chemokine binding. A number of studies have revealed that RBCs serve a variety of functions beyond oxygen transport (6, 7, 63, 64) (Table I). One important immunomodulatory property of human erythrocytes is their propensity to bind a wide variety of chemokines (Fig. 2). One major locus for binding is the Duffy Ag receptor for chemokines (DARC), which was first recognized by Darbonne and colleagues (7). This work demonstrated that erythrocytes act as a sink for CXCL8, thereby inactivating the CXCL8-dependent chemokine gradient and preventing neutrophil recruitment (7). Duffy binds other immunomodulatory proteins at high affinity as well, including additional CXC and CC chemokines besides CXCL8 (6, 63). In vitro experiments by Lee et al. (63) demonstrated that blood lacking erythroid Duffy exhibited higher plasma chemokine levels following LPS exposure, further implicating Duffy in chemokine scavenging. This is an evolutionarily conserved feature of DARC, as Duffy knockout mice exhibit higher chemokine (i.e., MIP-2 and KC) concentrations in the lung vascular space (63). Some have proposed that the sequestration of inflammatory molecules by red cell surface receptors functions to dampen immune response via attenuation of neutrophil signaling (7). Such an inhibitory system could confer a selective advantage, as overstimulation of the immune system can generate excessive inflammation and lead to tissue damage.

However, an alternative model for widespread binding of chemokines by DARC may actually result in the maintenance of blood chemokine levels, as chemokines would remain in circulation rather than being cleared. In support of this view, Duffy wild type mice contain significantly higher blood chemokine concentrations than Duffy knockout mice (64). Darbonne’s aforementioned experiments, which concluded that chemokine binding is superficial and easily reversible, may also hint at the potential for sustained immune activation, as erythrocyte receptors could alternately bind and release their substrates in the tissue microenvironment.

These two models for erythrocyte regulation of blood chemokine levels can be termed the sink hypothesis (i.e., erythrocyte chemokine binding serves to diminish immune-activating signals) and the reservoir hypothesis (i.e., erythrocyte binding prevents chemokine clearance, thereby prolonging chemokine half-life in the blood). Although these models appear contradictory at first, they may not be mutually exclusive: Fukuma et al. (64) suggested that erythrocytes do scavenge chemokines from sites of inflammation but eventually release them in response to decreases in

Chemokine Binding and Nucleic Acid Binding

FIGURE 2. An overview of the binding activities of human erythrocytes. Clockwise from top left. Erythrocytes bind chemokines through DARC, thereby modulating neutrophil recruitment and immune activation. Recent studies have shown that erythrocytes are capable of binding and scavenging mtDNA via TLR9. It is not yet known whether erythroid TLR9 can also scavenge other CpG-rich DNA fragments (e.g., bacterial DNA). Lyzed erythrocytes can release heme and hemoglobin into the extracellular environment. In the vicinity of invading microbes, hemoglobin can bind LPS and generate toxic ROS that function in host defense. However, the release of free heme during states of inflammation can result in excessive immune activation, leading to cellular injury or death. GYPa has been identified as a potential decoy receptor on the surface of human erythrocytes, functioning to sequester pathogens and facilitate their removal from circulation.
In addition to regulating chemokines, nucleic acid binding. In recent research demonstrates that erythrocytes are also capable of binding another class of molecules with the potential to mediate inflammatory responses: nucleic acids. Specifically, our recent work has focused on the ability of erythrocytes to bind DNA derived from mitochondria (mtDNA) (5). Mitochondria comprise a sizable endogenous reservoir of potentially inflammatory nucleic acids, which are released into circulation during normal cell turnover by activated immune cells and during cell death. Similar to the DNA of their bacterial ancestors, mtDNA is rich in immunostimulatory CpG motifs and initiates proinflammatory signaling through direct binding of CpG-containing DNA regions to TLR9. Furthermore, mtDNA is known to activate the inflammasome (65, 66), and cytosolic mtDNA is a potent inducer of STING (stimulator of IFN genes), an ER protein that senses a cellular second messenger produced in response to cytosolic dsDNA (67–70) and bacterially derived cyclic dinucleotides (67, 71). A growing body of literature implicates these mitochondrial damage-associated molecular patterns (DAMPs) in the pathogenesis of a variety of diseases, including autoimmunity, cancer, cardiovascular disease, trauma, and critical illness (72–76).

We recently reported that human erythrocytes express TLR9, potentially providing human erythrocytes with the capacity to scavenge or buffer potentially inflammatory nucleic acids in the circulation (5). Although in nonerythroid cells, TLR9 is trafficked to endolysosomal compartments and cleaved by lysosomal cathepsins to initiate innate immune signaling (77–79), it remains unknown whether erythroid surface TLR9 undergoes cleavage and signaling after binding mtDNA. We found that TLR9-positive erythrocytes bind and sequester circulating cell-free mtDNA, and in vivo mouse studies demonstrated that loss of this function results in enhanced lung injury during states of inflammation (5). Additionally, RBCs scavenged CpG DNA from human microvascular endothelial cells in vitro, which may serve to attenuate endothelial TLR9 activation (5).

Notably, there exists significant heterogeneity in erythroid TLR9 expression both between and within individuals (5). Some individuals express relatively high percentages of erythroid TLR9, whereas others express virtually none. Even in those who do express erythroid TLR9, the receptor is only present in a fraction of the total RBC population. Nevertheless, because of the vast number of erythrocytes in circulation [between 20 and 30 trillion in the average adult (1)], even a minority of TLR9-positive cells would have incredible potential to influence systemic function or modulate organ injury.

We are just beginning to understand the ways in which erythrocyte binding of nucleic acids influences systemic function. As in the case of RBC chemokine binding, nucleic acid scavenging may have discrepant effects on inflammation. In some instances, RBCs may attenuate inflammation in the lung compartment by scavenging mtDNA from endothelial cells; however, given the close mechanical contact between erythrocytes and the microvascular endothelium, RBCs binding mtDNA could also exacerbate inflammation by incidentally presenting the inflammatory molecules to immune or endothelial cells. Furthermore, mtDNA binding causes creation of the erythrocyte membrane, which could result in accelerated clearance of abnormal RBCs or entrapment of the RBCs in the microvasculature.

Although the recent results are consistent with a model in which RBCs scavenge mitochondrial DAMPs from the lung compartment, the dynamics of mtDNA scavenging may be more nuanced. It is possible that, similarly to findings with Duffy Ag and the chemokines that it binds, mtDNA binding could act either as a protective or pathologic mechanism, with the precise impact being largely dependent on the conditions of the local microenvironment.

It is not yet known whether RBCs are also capable of scavenging other types of nucleic acids. However, recent data suggest that Zika RNA may persist on red cells during storage (80). The recent discovery of numerous TLRs (including TLR3) in the transcriptome of mammalian reticulocytes offers a potential mechanism by which this binding could occur and intimates that still other TLRs and nucleic acid scavengers may yet be found on the surface of mature human erythrocytes (81). Furthermore, RBC binding of viral material may be important for disease pathogenesis and may also have implications regarding safe blood storage and transfusion practices.

Pathogen binding. In addition to their affinity for endogenous molecules like mtDNA and chemokines, human erythrocytes are also known to bind pathogens. Undoubtedly the most infamous and evolutionarily consequential erythrocyte pathogen belongs to the genus Plasmodium, a group of protozoa responsible for causing malaria. These pathogens have exerted the strongest evolutionary pressures on the human genome in recent millennia (82).

Each Plasmodium species has evolved distinct mechanisms for adhering to human erythrocytes. P. vivax and P. knowlesi attach via the aforementioned DARC (83, 84), rendering the presence of Duffy so maladaptive in high-malaria regions that nearly all West Africans and 68% of African Americans exhibit a Duffy-negative phenotype (85). Clearly, the benefits conferred by Duffy’s ability to scavenge chemokines were dwarfed by its deleterious effects in the presence of malaria, resulting in the spread of the allele conferring Duffy negativity.

The most virulent of the human malarial parasites, P. falciparum, invades erythrocytes after adhering to glycoporphin A (GYPA), B, or C (86, 87). Although individuals deficient in any of the glycoporphin types exhibit increased resistance to P. falciparum, GYPA paradoxically remains the most common erythrocyte surface protein in humans (12, 42, 88). Complete deficiency of erythrocyte GYPA is a viable but extremely rare phenotype, suggesting that the absence of GYPA must come at a cost (42) or that GYPA’s presence must provide sufficient benefit to override the selective pressure exerted by P. falciparum. Otherwise, P. falciparum would presumably have driven the widespread disappearance of GYPA in malarial regions.

GYPA may act as a decoy receptor, chaperoning pathogens away from important tissues and into the spleen to facilitate their destruction by macrophages (42). In support of this hypothesis, many of the pathogens that bind human glycoporphin (e.g., reovirus, influenza C, Sendai, Mycoplasma pneumoniae, Escherichia coli, and Ureaplasma urealyticum) do not infect erythrocytes themselves (42). This could also help
increase the incidence of RBC crenation. We speculate that and elevated levels of cell-free mtDNA during sepsis likely
formation appears to be a consequence of mtDNA binding (5),
important component of sepsis pathology. This cellular de-
ability to traverse microvessels (96–98).

Cerate levels, renders them less deformable, and reduces their
occurrence to erythrocytes during periods of sepsis and endotoxemia
conditions. Septic shock decreases erythrocyte 2,3-bisphosphogly-
alter host response and contribute to the pathogenesis of these
which have been shown to bind to erythrocytes. Thus, any
interaction between viral ligands and their host receptors may
ultimately determine whether erythrocyte pathogen binding
proves advantageous or detrimental to the host.

RBCs in the context of modern medicine

Critical illness. Given their capacity for interaction with both
exogenous and endogenous inflammatory molecules, eryth-
rocytes likely play a major role in the context of critical illness
(Fig. 3). During sepsis, the circulation is inundated with ex-
cess cell-free nucleic acids, pathogens, and chemokines, all of
which have been shown to bind to erythrocytes. Thus, any
loss of erythrocyte function has the potential to dramatically
alter host response and contribute to the pathogenesis of these
conditions.

Research indicates that physical and chemical changes do
occur to erythrocytes during periods of sepsis and endotoxemia
(96). Septic shock decreases erythrocyte 2,3-bisphosphogly-
cerate levels, renders them less deformable, and reduces their
ability to traverse microvessels (96–98).

Crenation of the RBC membrane is another potentially
important component of sepsis pathology. This cellular de-
formation appears to be a consequence of mtDNA binding (5),
and elevated levels of cell-free mtDNA during sepsis likely
increase the incidence of RBC crenation. We speculate that
crenation may expedite RBC clearance and turnover, potentially
leading to reduced RBC counts and anemia. Finally, crenated
RBCs may also be involved in inflammation, organ failure,
tissue ischemia, and vascular occlusion, all of which are central
to the sepsis phenotype.

Furthermore, erythrocytes of critically ill trauma patients
demonstrate diminished mtDNA scavenging ability (5). This
may be highly relevant to the disease pathogenesis of severe
sepsis, as recent studies have concluded that elevated levels of
plasma mtDNA during critical illness predict mortality (99, 100).
The loss of scavenging ability could be attributable to
saturation of erythroid TLR9 receptors due to the sheer amount
of excess nucleic acids in circulation or to cellular damage in-
curred by erythrocytes during inflammatory states. Whether
defective nucleic acid sequestration by RBCs contributes to the
development of lung or other organ injury during sepsis remains
unknown. Additionally, future research should aim to deter-
mine whether erythroid TLR9 has the ability to bind bacterial
CpG DNA in addition to mtDNA, as this could potentially
illuminate components of disease pathogenesis.

Cell-free heme is also an important factor in the context of
critical illness. In states of infection or inflammation, free heme
can act as a DAMP, contributing to excess inflammation, tissue
damage, and even death in susceptible hosts (58, 59). Various
scavengers of free heme have been identified, and reduced
levels of these heme scavengers are also associated with in-
creased mortality (58). One such heme scavenger, heme
oxygenase-1 (HO-1), catabolizes free heme and is upregulated
following LPS exposure (101). Although the carbon monox-
ide produced by HO-1 catabolism of heme can be a source of
ROS signaling and oxidative stress, the overall effects of the
HO-1/CO system are anti-inflammatory because of its re-
duction of TNF-α, IL-8, and MIP-1β levels and upregulation
of IL-12 (101). HO-1 has been shown to be protective in
individuals with severe sepsis, suggesting that elevated levels of
circulating free heme are central to the pathogenesis of the
condition (58). Additionally, low levels of the heme seque-
estering protein hemopexin (HPX) are associated with increased
mortality during sepsis, and administration of HPX during
septic shock reduced probability of mortality (58).
Critically ill patients are prone to developing acute respiratory distress syndrome, a life-threatening syndrome characterized by disruption of the alveolar endothelial–epithelial barrier resulting in leakage of proteinaceous fluids into the airspaces, loss of lung compliance, hypoxia, and respiratory failure (102). In preclinical models of lung injury, loss of erythrocyte DARC increased lung inflammation and airspace neutrophil recruitment (103, 104). Consistent with these findings, Kangelaris et al. (105) reported that African American patients possessing a gene polymorphism that abrogates erythroid DARC expression was associated with a 17% increased risk of mortality from acute respiratory distress syndrome compared with patients of European ancestry. African American patients with erythroid DARC, however, fared similarly to European American patients (105). Thus, it is possible that reduced erythrocyte chemokine scavenging function during critical illness may compound inflammation in susceptible hosts.

Malaria. In the context of malaria, free heme is generated following parasite digestion of hemoglobin. To protect themselves from the cytotoxic effects of heme, *P. falciparum* parasites convert the compound into an insoluble crystal known as hemozoin. Hemozoin itself is immunologically inert; however, it becomes coated with malarial DNA and subsequently presents the DNA to host TLR9, thereby magnifying the innate immune response (106). Whether erythroid TLR9 is important in the pathogenesis of malaria remains to be investigated.

Appearance of nucleated erythrocytes in disease states. Finally, it is worth noting that there have been numerous documented cases of nucleated RBCs (NRBCs) circulating in adult humans with severe diseases (32, 33). This is a highly abnormal phenotype, as NRBCs are typically only observed in the peripheral bloodstream of fetuses and neonates (32), yet it is observed in 10 to 30% of critically ill patients (34). Patient prognosis is poor in these cases, with over 50% of individuals dying in the hospital. The presence of NRBCs in the blood has been characterized as an independent predictor of mortality, typically portending death within 1 to 3 wk (33).

Given what is known about the immunologic functions of nucleated erythrocytes in nonmammalian vertebrates, it is tempting to speculate that the reappearance of this evolutionarily ancient trait in humans may serve a functional purpose. For instance, NRBCs could represent a final effort to extrude as many immunologically active cells into circulation as possible in an attempt to overcome a life-threatening insult. Although this is highly speculative, further investigation may uncover previously unrecognized immune activities of human NRBCs.

Conclusions

Altogether, these findings provide mounting evidence that erythrocytes play a direct and significant role in innate immunity and inflammation. Given that erythrocytes are the most abundant cell in the human body (1), they have the capacity to exert substantial effects on immune function. Although this review outlines several immunomodulatory functions of RBCs, the full scope of erythrocyte involvement in the human immune response remains to be defined.

Numerous unanswered questions persist, including whether other pathogen recognition receptors exist on mature RBCs. Furthermore, although the metabolic functions of RBCs are well established, it is unknown whether changes in RBC metabolism may contribute to alterations in immune function. In addition, further investigation into the dualistic nature of erythrocyte immune modulation is required. Research thus far suggests that the utility of RBC binding activities is context dependent, sometimes exacerbating the immune response and sometimes maintaining immune quiescence, but the precise mechanisms and environmental factors moderating this dualism remain enigmatic. Finally, it remains unresolved whether RBC alterations during disease states are the product or the cause of disease pathogenesis.

Further research into the immune functions of erythrocytes will be crucial to understanding not only diseases that affect RBCs directly (e.g., malaria and sickle cell disease) but also chronic and acute inflammatory states where regulation of DAMPs and other mediators is essential for disease control (e.g., sepsis, trauma, and autoimmunity). Given the immune functions of erythrocytes in other vertebrate orders, comparative evolutionary approaches may yield insights into undiscovered functions of erythrocytes in humans. In light of recent findings demonstrating that Zika RNA persists on stored RBCs (80) and the presence of TLR on erythrocytes (5), we stress the importance and urgency of continued research into the immunomodulatory functions of human RBCs.

Acknowledgments

We thank Dr. Caitlin Clancy for work designing Figs. 1–3 as well as Dr. Stefano Rivella for constructive feedback during the writing process.

Disclosures

The authors have no financial conflicts of interest.

References

17. Jiang, J., C. Wu, H. Gao, J. Song, and H. Li. 2010. Effects of astaxanthin poly-
28. Wingstrand, K. G. 1956. Non-nucleated erythrocytes in a teleostean fish Maur-
33. Wingstrand, K. G. 1956. Non-nucleated erythrocytes in a teleostean fish Maur-
35. Blatter, D., B. Lui, D. Stone, and B. Wyatt. The denucleation of the mammalian
erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. Cell Host Microbe 4: 10–20.
sponse to endotoxin. Shock 17: 485–490.
41. Su, D., R. I. Roth, M. Yoshida, and J. Levin. 1997. Hemoglobin increases mor-
sponse to endotoxin. Shock 17: 485–490.
45. Su, D., R. I. Roth, M. Yoshida, and J. Levin. 1997. Hemoglobin increases mor-
}
87. Cowman, A. F., D. Berry, and J. Baum. 2012. The cellular and molecular basis for
88. Poole, J. 2000. Red cell antigens on band 3 and glycophorin A.