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The Journal of Immunology

Novel Transcriptional Activity and Extensive Allelic
Imbalance in the Human MHC Region

Elizabeth Gensterblum-Miller,* Weisheng Wu,† and Amr H. Sawalha*,‡

The MHC region encodes HLA genes and is the most complex region in the human genome. The extensively polymorphic nature of

the HLA hinders accurate localization and functional assessment of disease risk loci within this region. Using targeted capture

sequencing and constructing individualized genomes for transcriptome alignment, we identified 908 novel transcripts within

the human MHC region. These include 593 novel isoforms of known genes, 137 antisense strand RNAs, 119 novel long intergenic

noncoding RNAs, and 5 transcripts of 3 novel putative protein-coding human endogenous retrovirus genes. We revealed allele-

dependent expression imbalance involving 88% of all heterozygous transcribed single nucleotide polymorphisms throughout

the MHC transcriptome. Among these variants, the genetic variant associated with Behçet’s disease in the HLA-B/MICA region,

which tags HLA-B*51, is within novel long intergenic noncoding RNA transcripts that are exclusively expressed from the

haplotype with the protective but not the disease risk allele. Further, the transcriptome within the MHC region can be defined

by 14 distinct coexpression clusters, with evidence of coregulation by unique transcription factors in at least 9 of these clusters.

Our data suggest a very complex regulatory map of the human MHC, and can help uncover functional consequences of disease

risk loci in this region. The Journal of Immunology, 2018, 200: 1496–1503.

T
hehumanMHC is a highly complex polymorphic genomic
region containing many important immune-related genes.
This region includes the HLA genes, involved in both self-

tolerance and Ag presentation. Polymorphisms within HLA genes
have been associated with over 100 autoimmune diseases and
cancers, and allelotyping of translated genes has been the focus of
extensive research (1–3). Intergenic variants within the MHC re-
gion, which may serve a role in gene regulation, have also been
associated with several immune-related diseases (4, 5). However,
the role of these intergenic variants is often not clear because
regulation within the MHC is incompletely understood. The MHC
contains a complex regulatory network including cis-acting and
trans-acting regulation bridging inside and outside the MHC re-
gion (6, 7). Due to both the high rate of polymorphism and
the complex regulatory networks within the MHC, the functional

effects of specific disease-associated variants are difficult to
elucidate.
Long intergenic noncoding RNAs (lincRNAs) have been ex-

tensively implicated in transcriptional regulation by recruitment of
regulatory proteins. These proteins proceed to regulate gene ex-
pression by epigenetic modification, such as DNA methylation and
chromatin modification (8, 9). Recruitment of transcription factors
by lincRNAs has also been described previously (10). However,
many lincRNAs are weakly expressed, and therefore may not be
detected by RNA sequencing that spans the entire transcriptome.
Sequence-specific enrichment by magnetic bead pulldown has

previously been used to sequence HLA genes for allelotyping, and
to elucidate regulatory regions of individual genes (2, 4). We
performed targeted enrichment of the entire MHC region in pri-
mary human monocytes using sequence-specific capture probes,
followed by high-throughput sequencing of DNA and RNA
(CaptureSeq) (11), to allow for deep sequencing coverage of the
MHC region. We targeted the entire MHC, including both inter-
genic regions and known splice variants. We identified genetic
variants, then constructed personalized genomes to accurately
align RNA sequences. After enrichment and alignment to per-
sonalized genomes, we were able to detect low-expressed tran-
scripts, and by including all genomic regions, we were able to
identify novel intergenic transcripts. We also comprehensively
assessed allelic expression imbalance and revealed extensive
allele-specific expression throughout the entire MHC, indicating
that polymorphism is a mechanism of complex transcriptional
regulation in this region.

Materials and Methods
Probe design

Sequence-specific capture probes were designed to target the complete
reference genomic sequence of theMHC region (chromosome 6: 28.5–33.5Mb,
hg19), as well as splice sites for known transcripts the region contains. By
including intergenic and intronic genomic regions, sequences that overlap
with previously unannotated regions could be captured and subsequently
sequenced; moreover, the same set of probes was designed to enable us to
capture both DNA and RNA. This pool of 75 base long capture probes was
designed to target 35,895 sequences throughout the region. For the main
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reference allele, probes directly overlapped 75.9% of the genome, with
88% estimated total sequence coverage. However, because the MHC
region is highly polymorphic, the seven alternative reference haplotypes
for the MHC were used in addition to the reference allele to design
probes targeting all reference genomic sequences in this region. In total,
this region, including all alternative haplotypes, was 65.4% covered by the
probes, and had a 75.7% estimated net coverage. Of the total target region,
including alternate haplotypes, 10% was not covered due to shared ho-
mology with other parts of the genome, whereas 14.2% was not covered
because of incomplete sequence information in the alternative haplotypes.

Isolation of primary monocyte DNA and RNA

PBMCs isolated from 12 healthy individuals were initially collected by
density gradient centrifugation and immediately stored in liquid nitrogen.
Cells were thawed, treated with 25 U/ml Benzonase, and incubated at 37˚C
in RPMI 1640/10% heat-inactivated FBS for 90 min. Thawed PBMCs had
a minimum viability of 90%, with an average viability of 98.1 6 3.6%,
measured by trypan blue staining. Primary monocytes were then isolated
from thawed PBMCs via negative selection using the Pan Monocyte Iso-
lation Kit, following the manufacturer’s instructions (Miltenyi Biotec, San
Diego, CA). The remaining monocyte-depleted PBMCs were flushed from
the magnetic column, and DNA was isolated using the DNeasy Blood and
Tissue Kit (Qiagen, Germantown, MD). RNA was isolated from primary
monocytes using the Direct-zol RNA Isolation Kit (Zymo Research, Irvine,
CA), and then DNase treated using the TURBO DNA-free kit (Invitrogen,
Carlsbad, CA). The purity of the isolated monocytes was measured by flow
cytometry using the iCyt Synergy SY3200 cell sorter (Sony Biotechnology,
San Jose, CA), staining with APC/Cy7 anti-CD14 (BioLegend, San Diego,
CA). Monocyte purity was found to be .90%.

DNA and RNA sequencing

RNA integrity and concentration were verified using the Agilent Bio-
analyzer (RIN . 8) (Agilent Technologies, Santa Clara, CA). A minimum
of 500 ng of RNAwas processed per sample. RNAwas ribo-depleted using
the NEBNext rRNA Depletion Kit (Human/Mouse/Rat) (New England
Biolabs, Ipswich, MA), and sequencing libraries were prepared for every
DNA and RNA sample. Sequence-specific magnetic bead capture was
performed on DNA and RNA libraries according to the manufacturer’s
instructions, using the custom-designed probes (SeqCap EZ Choice XL
Library System; Roche Nimblegen, Madison, WI). Samples were multi-
plexed, with four samples per capture reaction. All postcapture genomic
DNA libraries were sequenced in one lane, whereas all postcapture cDNA
libraries were sequenced in another. All samples were sequenced with the
Illumina HiSEquation 2500, with paired 125 bp reads. The RNA se-
quencing data presented in this article have been submitted to the National
Center for Biotechnology Information’s Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108663) under
accession number GSE108663.

Developing individualized genotypes

DNA reads were quality trimmed using Trimmomatic, then aligned to the
hg19 reference sequence using the Burrows-Wheeler aligner (BWA MEM)
(12). Duplicate sequences were then removed using Picard, and indels
were processed using the Genome Analysis Toolkit (GATK) (13–15).
From these aligned reads, SAMtools was used to generate an mpileup file,
then VarScan mpileup2snp was used to identify single nucleotide poly-
morphisms (SNPs) (16, 17). For each individual, SNPs were called based
on variation from the reference genome (hg19), and all called SNPs have a
total read depth of at least eight and a maximum variant calling p value of
0.01. For all heterozygous SNPs, each allele also has a minimum variant-
supporting read depth of two, a minimum average variant-supporting read
base quality of 20, and a minimum allele frequency of 0.2. From these
identified and quality filtered SNPs, individualized lists of variants were
created for each sample. On average, per individual, 23,575 heterozygous
variants were identified in the MHC region. The average read depth on
heterozygous variants identified in all samples was 417 6 95.2 with an
average variant-supporting read base quality of 230.6 6 11.7.

RNA alignment and assembly

RNA sequencing reads were quality trimmed using Cutadapt, then aligned
to the human reference genome (hg19, chromosome 6, RefSeq tran-
scriptome annotation) using GSNAP (18, 19). Alternate haplotypes for
chromosome 6 in the reference genome were not used for alignment, to
prevent errors from multimapped reads. RNA reads were aligned in a SNP-
tolerant manner, meaning that variants that were called from the DNA
sequencing alignment were not included in the mismatch penalty scores

for RNA reads. Reads that successfully aligned to the target region were
assembled into transcripts using StringTie, guided by the Ensembl tran-
scriptome annotation (20).

Identification of novel transcripts

During RNA assembly, transcripts were annotated using an Ensembl ref-
erence. To identify novel transcripts, we used the following workflow
(Supplemental Fig. 1). All transcripts that were successfully annotated
using the Ensembl reference during alignment were excluded. Using
CuffCompare, the remaining transcripts were annotated using Gencode
Comprehensive v25 (hg19) as a reference (21, 22). All transcripts were
assigned class codes based on their relation to transcripts in the reference.
All transcripts that were assigned the class codes I (intronic), J (novel
isoform), U (intergenic), and X (antisense) were identified as novel,
whereas transcripts containing all other class codes were defined as not
novel. The remaining novel transcripts were annotated with CuffCompare
using the human lincRNA catalog (23). The transcripts that were found to
be novel using all three references were next filtered to include only
transcripts with fragments per kilobase of transcript per million mapped
reads of 0.1 in two or more samples.

The coding potential of each novel transcript was analyzed using the
Coding Potential Analysis Tool (CPAT) (24). The sequence of each novel
transcript was determined using genomic coordinates determined by
StringTie and the sequence of the reference genome, and these sequences
were used to determine coding potential for each transcript. Transcripts
with a coding probability of 0.364 or greater were defined as putatively
coding, whereas all others were defined as noncoding. All novel transcripts
were categorized based on their Gencode annotation class codes and by
these coding predictions.

Predicted function of coding genes

Of the five putative coding transcripts that did not share exons with known
genes, structure and function were predicted using IntFOLD3. Using the
open reading frame predicted by CPAT, the putative amino acid sequence
was determined from the transcript sequences using A Plasmid Editor.
Using the IntFOLD3 pipeline, we predicted the tertiary structure of the
novel peptides, guided by sequence homology with known proteins (25). In
addition, putative ligand binding domains and gene ontology term anno-
tation were predicted using the FunFOLD pipeline, which is integrated into
IntFOLD3.

Retroviral element sequence alignment

The five novel putative coding intergenic transcripts described were
categorized based on their alignment to retroviral sequences. The
predicted open reading frames of each of the five transcripts were
translated into a protein sequence. Two transcripts that were isoforms of
the same gene shared an open reading frame, so four protein sequences
were generated. These sequences were aligned to the human proteome
using protein-protein BLAST with the nonredundant protein sequences
database (26). Each of these four sequences aligned to known retroviral
elements (E value ,1 3 10210). Sequence alignments were visualized using
MView (27).

Allele-specific expression

Allele-specific expression of aligned transcript and genomic reads at each
heterozygous SNP was assessed using GATK ASEReadCounter under the
default settings, which includes a read downsampling step (13, 14). Only
alignments with base quality and mapping quality no lower than 20 were
used. The read counts for each transcript were then normalized to genomic
allele-specific read counts derived from DNA reads using GATK ASER-
eadCounter under the default settings. The DNA allelic imbalance (AI)
ratio was first calculated for both the reference and alternate allele of each
variant as follows:

AI ¼ Allele read counts

Total DNA read counts
:

Read counts for both alleles of each variant were then calculated from the
following formula:

Normalized read count ¼ RNA Allele Specific Read Count

2 3AI
:

SNPs containing AI were defined by a x2 test, p value ,0.05, calculated
based on the normalized read counts. Relative AI for all expressed het-
erozygous SNPs was calculated as the reference SNP expression/total
expression ratio. Heterozygous SNPs and relative reference allele
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expression for all individuals were merged based on SNP position and

reference allele. Allele specific expression at rs76546355 was also con-

firmed using the program bam-readcount (28).

Coexpression analysis

Coexpression networks were assigned using the R package weighted
correlation network analysis (29). This package clusters every sequenced
transcript based on the normalized read counts (fragments per kilobase of
transcript per million mapped reads) in all 12 samples, using a weighted
correlation network analysis. For initial quality filtering, all transcripts that
were missing from more than one half of all samples were removed from
analysis; 320 transcripts were removed. Samples were then clustered
according to transcription patterns to remove any outlier samples; however,
no outlier samples were observed. From this filtered set of 2753 transcripts,
a coexpression network was created, with a soft-thresholding power of
seven, a dendrogram cut height of 0.25, and a minimum cluster size of 30
transcripts. All transcripts were categorized within an expression dendro-
gram, then successfully assigned to a coexpression cluster. A total of 14
clusters were defined. The genomic localization of each cluster was vi-
sualized using Circos (30).

Transcription factor binding site enrichment analysis

Transcription factor binding site enrichment analysis was performed for
each of the 14 coexpression clusters using GenomeRunnerWeb (31), which
compares the genomic coordinates of each transcript to the genomic po-
sitions of known transcription factor binding sites, using a database that
includes the non–cell-specific binding patterns of 161 transcription factors,
measured via transcription factor chromatin immunoprecipitation–seq
distributed by ENCODE. The coordinates for the promoter region of each
gene in each coexpression cluster was used as input, defined as the 1500 bp
preceding transcriptional start sites. As a background for enrichment
analysis, we included the promoter region of every gene within the MHC
region, as annotated by the University of California, Santa Cruz known
genes list, and also included the novel genes that we have described. The
University of California, Santa Cruz known gene list contains an aggre-
gation of gene annotations from across the RefSeq, GenBank, CCDS,
Rfam, and tRNAscan-SE databases. Transcription factor enrichment was
calculated for each coexpression cluster individually, and a cluster was
called enriched for a specific transcription factor when an increased fre-
quency of the target was observed in the cluster compared with the
background (OR . 1, x2 p , 0.05). In total, 9 of the 14 coexpression
clusters were enriched for specific transcription factors.

HLA allelotypes

HLA allelotypes for each sample were determined using a BWAkit. This
pipeline calls types by aligning reads to each HLA gene using the BWA-
MEM algorithm, and comparing the exons of each gene to alleles defined
by IMGT/HLA. The called types (Supplemental Table I) are defined as the
alleles that have minimal exonic mismatch with the individual’s sequence.

Sanger sequencing

Allele-specific expression was validated by Sanger sequencing for the target
variant rs76546355. RNAwas saved from each individual before sequence-
specific capture and was converted into cDNA using the Verso cDNA
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA). This cDNA was
then amplified via PCR, using primers that flank the target SNP (forward
primer: 59-TGCTTGCCTGTTGTGAGATG-39, reverse primer: 59-AAG-
CAACAGTAATTTGGATCTTCC-39). The proportion of each allele rep-
resented in this PCR product was estimated using a Sanger sequencing
trace file for each sample.

Results
Targeted genome and transcriptome sequencing in the human
MHC region

We performed deep targeted genome and transcriptome sequencing
of the human MHC region [chromosome 6 (hg19): 28.5–33.5 Mb]
in primary human monocytes. Constructing individualized ge-
nomes for aligning RNA sequencing reads generated by deep
targeted transcriptome sequencing improved transcript alignment
and characterization in this complex polymorphic region. DNA
sequence reads aligned against the reference genome human MHC
region with a mean read depth of 334.8 6 84.3 in all samples

(Supplemental Fig. 2). Genetic polymorphisms in each sample
were identified and an individualized MHC genome in each
sample was constructed. A total of 65,289 genetic variants relative
to the reference genome were identified, including 62,449 genetic
variants that are heterozygous in at least one sample.
TargetedRNAsequencingwas performed following rRNAdepletion,

allowing for high density coverage with an average 36.3 million
alignments to the MHC region, and a mean read depth of 594.56 87.2
per gene in this region in all samples. RNA sequence alignment was
performed in an individualized SNP-tolerant mode using DNA se-
quencing data from each sample to allow alignment to polymorphic
loci identified in each corresponding sample. This strategy significantly
enhanced successful alignment of transcript reads to the polymorphic
MHC region, which, coupled with highly dense targeted RNA se-
quencing, allowed for accurate identification of known and novel
transcripts in the MHC region, including transcripts with low expres-
sion levels.

Identification and classification of novel transcripts within the
MHC region

We identified a total of 3072 transcripts aligned to the human MHC
region in human primary monocytes. Of these, 908 were identified
as novel transcripts that were present in at least two independent
samples (Supplemental Table II). This includes 517 and 76 novel
coding and noncoding transcript isoforms of known genes, re-
spectively. In addition, we identified 137 novel antisense strand
transcripts, 119 lincRNA transcripts, 54 intronic noncoding RNA
transcripts, and 5 transcripts of 3 novel coding genes (Fig. 1).

FIGURE 1. A flowchart (A) and pie chart (B) depicting and summa-

rizing the filtering categories used to classify novel transcripts identified in

this study. The categories for intronic, novel isoforms, antisense, and

intergenic transcripts were defined via a CuffCompare annotation using the

Comprehensive Gencode Resease 25 annotation (hg19) reference tran-

scriptome. Coding potential of novel transcripts was predicted using CPAT.
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Evidence for extensive cis allele-specific expression within the
human MHC

Next, we evaluated the extent of allele-specific expression imbalance
in MHC region transcripts that overlap with heterozygous single
nucleotide polymorphisms identified using DNA sequencing. We
show that 88% of heterozygous transcribed SNPs within the MHC
region are associated with significant allele-dependent transcriptional
imbalance, with 43% demonstrating extreme allele-dependent ex-
pression (.95% expression on either the reference or alternative al-
lele) (Fig. 2A). Indeed, AI is observed in over 69% of all
heterozygous SNPs identified in our study within the MHC region
(Supplemental Tables III, IV). This remarkably extensive allele-
specific expression pattern is nonstochastic and consistent across in-
dependent samples in heterozygous SNPs that are present in two or
more samples (Fig. 2B, 2C). Whereas the overall number of het-
erozygous SNPs with evidence of allelic expression imbalance was
highest in the HLA class II gene region within the MHC, the fre-
quency of transcribed SNPs with AI relative to all transcribed SNPs
was consistent throughout the HLA regions within the MHC (Fig. 3,
Supplemental Table V).

To demonstrate AI in a disease-relevant locus in the MHC region,
we examined the expression of novel transcripts that overlap with and

include the SNP rs76546355 (rs116799036) localized betweenHLA-B

and MICA. This genetic variant tags the most robust genetic associ-

ation in Behçet’s disease (5). We show that rs76546355, previously

thought to be intergenic, is expressed within four lincRNA tran-

scripts we identified between HLA-B and MICA. Importantly,

these four transcripts are exclusively expressed from the hap-

lotype with the disease-protective allele in this SNP. There was no

expression of these transcripts from the haplotype with the disease

risk allele in heterozygous individuals (Fig. 4). These data suggest

evidence for haploinsufficiency involving the expression of novel

lincRNAs, induced by a disease risk variant within the MHC re-

gion in a complex polygenic disease.

Coexpression patterns and transcription factor binding
analyses identify transcriptional clusters in the human MHC
transcriptome

We characterized the expression patterns of the transcripts within
the MHC using a coexpression network analysis. We defined a

FIGURE 2. (A) Frequency distribution histogram of instances of allele-specific expression. The average relative expression (proportion of reads con-

taining the reference allele) was calculated for all transcribed heterozygous SNPs identified in our study. Each bin spans a relative expression range of 0.05.

(B) Variants in which the average relative expression of the reference allele is .0.5, and in which the average relative expression is ,0.5 (C). The relative

expression of the reference allele in each SNP with AI (binomial p , 0.05) in two or more samples is represented on the y-axis. The reference allele is

defined by the genotype of the reference genome, which is consistent across all samples. Relative expression ranges from 0 (red) to 1 (blue). The AI of

specific SNPs is shown to be highly consistent across individuals.
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coexpression network including all aligned transcripts, based on the
normalized read counts across all 12 samples, using a weighted
correlation network analysis (29). Based on this network, the
transcripts were grouped into 14 coexpression clusters, which do
not localize to specific genomic regions within the MHC (Fig. 5).
Nevertheless, coexpression remains highly aggregated within
individual clusters, and there is a high degree of separation be-
tween each cluster within the network (Supplemental Fig. 3).
We further described transcription factor binding site enrichment

in each cluster (Supplemental Table VI). Of the 14 coexpression
clusters, 9 were enriched for specific transcription factors (OR . 1,
p , 0.05). For these clusters, the transcription factor binding sites
most significantly enriched were TCF3 (OR: 2.17, p: 8.06 3 1027),
ESR1 (OR: 2.72, p: 2.213 1025), RFX5 (OR: 1.68, p: 4.273 1025),
SMARCA4 (OR: 2.56, p: 2.103 1024), GATA1 (OR:2.08, p: 2.25
3 1024), IKZF1 (OR: 4.80, p: 6.92 3 1024), GRp20 (OR: 2.57,
p: 2.39 3 1023), CEBPD (OR: 1.52, p: 5.44 3 1023), and
SMARCA4 (OR: 3.68, p: 6.74 3 1023). The enrichment of these
specific transcription factor binding sites suggests that these nine
clusters may show coexpression due to transcription factor–
dependent coregulation.

Identification of novel retroviral genes with the human MHC

We identified three novel genes with an open reading frame that
are predicted to be protein coding within the human MHC region,
and demonstrate gene expression at the mRNA level. Using pro-
tein function and structure prediction algorithms, two of the three
coding genes we identified are predicted with very high and
moderate certainty to be novel endogenous retroviral pol and gag
genes, respectively (Fig. 6). The structure and function of the third
gene could not be predicted. The predicted amino acid sequences
of all three genes were aligned to the human proteome using

protein-protein BLAST (26). Based on the homology between
each novel sequence and the human endogenous retroviruses to
which it is aligned, we predict that these genes are retroviral pol,
gag, and gag proteins, respectively (Supplemental Table VII).

Discussion
Variation within the MHC contributes to genetic risk of immune and
inflammatory disease. However, this region is characterized by
complex variation patterns that complicate identifying causal vari-
ants and their direct effects on disease etiology (32). Moreover, these
complex variation patterns play a role in the complex alternative
splicing and gene regulation networks that have been described in
this region (7, 33). Quantification of MHC transcription by RNA
sequencing has been limited by both the high rate of polymorphism
and the high rate of splice variants, resulting in limitations in RNA
sequence alignment (18). Using individualized genomes to map
RNA sequencing reads, we accurately measured gene and splice
variant expression within the MHC, which can be used to further
elucidate the functional effects of variations relevant to disease.
Sequence variation can affect the expression of transcripts by

interfering with cis-regulation, such as altering promoter or en-
hancer activity, altering DNA methylation patterns, or altering the
sequence of regulatory RNAs. Variants linked to these cis-effects
(cis–expression quantitative trait loci) affect expression in an allele-
specific manner. Haplotype-specific gene expression within the HLA,
and AI linked to cis–expression quantitative trait loci in autoimmu-
nity have been previously described (4, 34). Our findings suggest
extensive allele-specific expression throughout the MHC, which in-
volves 88% of all transcribed SNPs in this region.
Many lincRNA transcripts are expressed at low levels, rendering

them undetectable without sequence enrichment. By targeting the

FIGURE 3. Histograms depicting the number of SNPs

with allelic expression imbalance (A), and frequency of

SNPs with allelic expression imbalance relative to all

heterozygous SNPs detected in the MHC region (B). Each

bin spans 5000 bp.

1500 TRANSCRIPTOME OF THE HUMAN MHC REGION
D

ow
nloaded from

 http://journals.aai.org/jim
m

unol/article-pdf/200/4/1496/1438024/ji1701061.pdf by guest on 19 April 2024

http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1701061/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1701061/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1701061/-/DCSupplemental


MHC region using sequence-specific capture probes, we identified
novel noncoding transcripts throughout the region. As lincRNAs
have been implicated in transcriptional regulation, this suggests a
far more complex regulatory network within the MHC than has
been previously described. Variation within the MHC further
affects the patterns of transcription regulation, due to AI as we
demonstrate.
The genetic association of polygenetic diseases within the HLA

is complex, and often the identification of causal genetic variants is
complicated by the extensive linkage disequilibrium within this
region. Although specific amino acid residues and classical HLA

allelotypes have been considered to contribute to disease patho-
genesis in several immune-mediated diseases, our data highlight
the importance of including regulatory effects of these disease-
associated polymorphisms to better understand the functional
role of genetic variants within the HLA.
When we compare the expression patterns of all transcripts

across all 12 sequenced individuals, a pattern of coexpression is
observed. Although the coexpression of genes does not intrinsically
imply coregulation, regulation by the same transcription factors is
one mechanism by which coexpression can occur. After quanti-
fying the enrichment of the transcription factors binding to the

FIGURE 4. (A) The genetic variant rs76546355 (rs116799036), which explains the most robust genetic association for Behçet’s disease and previously thought to be

in a nontranscribed genetic region, is expressed within four lincRNA transcripts between HLA-B and MICA. (B) RNA sequencing revealed that these lincRNA

transcripts are exclusively expressed from the disease protective allele (allele G), and no expression was detected from the disease risk allele (allele A) in heterozygous

samples. RT-PCR followed by Sanger sequencing confirmed expression of the novel lincRNA transcripts in this locus, and allele expression imbalance in rs76546355 (a

representative chromatogram of seven heterozygous samples is shown) (C).

FIGURE 5. All unique transcripts plotted according to

genomic position within the MHC region [chromosome 6:

28.7–33.5 Mb (hg19)]. Chromosome 6 position (labeled in

megabases) is plotted on the outer ideogram, and each

MHC class is marked. Each aligned transcript, including

novel transcripts, was grouped into coexpression clusters

using the normalized read counts from each sequenced

individual (n = 12). Every transcript is plotted according to

position, and colored according to cluster identity (red,

dark red, orange, yellow, lime green, green, light blue, dark

blue, purple, magenta, pink, black, gray, and brown).

Multiple isoforms of the same gene can be found in the

same coexpression cluster, but this is not a requirement

and is never the case across all isoforms of a gene. There is

no evidence for colocalization based on genomic positions

of transcripts within individual coexpression clusters. Nine

of the fourteen were enriched for specific transcription

factors; the most significantly enriched transcription factor

for each cluster is listed.
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promoter regions of the transcripts in each cluster, we found that 9
of the 14 clusters were enriched for specific transcription factors.
This suggests that regulation by these transcription factors may
play a role in the expression patterns of the transcripts in each
cluster. Some of the enriched transcription factors identified play a
role in specific immunological processes. For example, one of these
coexpression clusters was found to be enriched for RFX5, a
transcription factor that activates MHC class II expression by
enhancing CIITA activity (35). Another transcription factor, enriched
in a different cluster, CEBPD, is directly involved in promoting
macrophage activation, M1 macrophage polarization, and proin-
flammatory cytokine production in macrophages (36). The tran-
scription factor GATA1 is involved in dendritic cell differentiation
and survival (37). Each of these enriched transcription factors has a
unique role in monocyte differentiation, suggesting that they have a
role not only in determining coexpression patterns of transcripts, but
also in downstream determination of cellular phenotypes.
We foundfive novel putative coding transcripts, identifying three novel

human endogenous retroviral elements (ERVs). ERVs comprise 8% of
the human genome (38). Though mutations have silenced the expression

of the majority of these elements, ∼7% of all known ERVs are tran-
scriptionally active (39). Moreover, mutations in these elements have
been linked to diseases, including cancer (33) and multiple sclerosis
(40). Translated ERVs have been shown to play a role in lymphocyte
activation, and transcribed ERVs play a role in transcriptional regulation
(41). The exact function of these novel ERVs, and their precise effects
on transcription and immune function, has yet to be fully elucidated.
In summary, we performed deep sequencing of both the genome

and the transcriptome, targeting the MHC region with sequence-
specific capture probes in human monocytes. We accurately iden-
tified and quantified the expression of 908 novel transcripts in this
region, including 123 transcripts aligning to regions previously
thought to be intergenic. In addition, we uncovered extensive allele-
specific expression imbalancewithin theMHC region, which appears
to be nonstochastic, suggesting complex cis-acting transcriptional
regulation throughout the human MHC. This AI can have functional
consequences upon disease risk loci within the MHC region.
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FIGURE 6. Genomic position (hg19) and predicted protein structure of the three novel protein-coding genes identified in this study. (A) One protein-

coding novel transcript (blue) is within the intronic region of the gene XXbac-BPG308J9.3. (B) and (C) depict novel protein coding transcripts (blue) in

intergenic regions, near HLA-A and HLA-DRA, respectively. Each of these transcripts shares homology with ERVs. (D) The predicted protein structure of

transcript A (prediction p value = 1.17 3 1024). This structure shares homology with an endogenous retroviral pol protein, and no predicted ligands are

available. (E) The predicted protein structure of transcripts C (prediction p value = 0.037). This structure shares homology with a retroviral gag protein, and

is predicted to bind to a leucine residue (predicted active site amino acids are shown in green). In both (D and E), coloring is based on secondary structure: a

helices are purple, 3–10 helices are blue, b sheets are yellow, b bridges are tan, turns are cyan, and coils are white.
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