Sex Drives Dimorphic Immune Responses to Viral Infections

Soumitra Ghosh and Robyn S. Klein

J Immunol 2017; 198:1782-1790;
doi: 10.4049/jimmunol.1601166
http://www.jimmunol.org/content/198/5/1782

References This article cites 158 articles, 35 of which you can access for free at:
http://www.jimmunol.org/content/198/5/1782.full#ref-list-1

Why The JI? Submit online.

• Rapid Reviews! 30 days* from submission to initial decision
• No Triage! Every submission reviewed by practicing scientists
• Fast Publication! 4 weeks from acceptance to publication

*average

Subscription Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Sex Drives Dimorphic Immune Responses to Viral Infections

Soumitra Ghosh* and Robyn S. Klein*†‡

New attention to sexual dimorphism in normal mammalian physiology and disease has uncovered a previously unappreciated breadth of mechanisms by which females and males differentially exhibit quantitative phenotypes. Thus, in addition to the established modifying effects of hormones, which prenatally and postpubertally pattern cells and tissues in a sexually dimorphic fashion, sex differences are caused by extra- gonadal and dosage effects of genes encoded on sex chromosomes. Sex differences in immune responses, especially during autoimmunity, have been studied predominantly within the context of sex hormone effects. More recently, immune response genes have been localized to sex chromosomes themselves or found to be regulated by sex chromosome genes. Thus, understanding how sex impacts immunity requires the elucidation of complex interactions among sex hormones, sex chromosomes, and immune response genes. In this Brief Review, we discuss current knowledge and new insights into these intricate relationships in the context of viral infections. *The Journal of Immunology, 2017, 198: 1782–1790.

Age, sex, and immune state of the host are considered salient biological factors that determine the extent and strength of pathogen clearance during infectious diseases (1–3). With regard to viral infections, epidemiological studies revealed that males have a higher mortality compared with females, who reportedly display stronger antiviral cellular and humoral immune responses (4). Although stronger immune responses may provide better protection against certain pathogens, in some chronic viral infections it can lead to aberrant antigenic responses with immunopathology (5, 6). Net sex differences or the degree of sexual dimorphism in biological responses derive from genetic differences in chromosome complement and induce their effects via acute activational or prenatal organizational/epigenetic effects of gonadal sex hormones (estrogen, progesterone, and androgens), extragonadal effects of sex chromosome-encoded genes, and compensatory mechanisms, such as reduction in gene-dosage differences through X-chromosome inactivation. These processes underlie sex differences in most tissue responses during normal and disease states, including immunological responses to infectious diseases (Fig. 1).

Differences in susceptibility and response to viral pathogens observed in males and females have primarily been attributed to activational effects of sex hormones and dosages of genes on the X and Y chromosomes (4). The onset of puberty is associated with the numbers and functions of circulating granulocytes and monocytes, which are decreased, but activated, in females as a result of rising levels of progesterone in the setting of ovulation or pregnancy (7, 8). In addition, myeloid cells and lymphocytes express receptors for estrogen, progesterone, and androgens, which orchestrate transcriptional pathways and ligand-dependent or ligand-independent signaling cascades that influence innate and adaptive immune responses to viruses (9–12). With regard to gene dosage on sex chromosomes, X-linked genes, such as IL-13, IL-4, IL-10, XIST, TLR7, FOXP3, and sex-determining region Y box 9 (SOX9), on the X chromosome and sex-determining region Y (SRY; testis-determining factor) and SOX9 on Y chromosome may underlie sexually dimorphic responses that contribute to stronger innate, cellular, and humoral immune responses and susceptibility to autoimmune diseases in females compared with males (13–15). Studies in humans and animal models indicate sexually dimorphic mechanisms that contribute to virologic control during infections with HIV-1, vesicular stomatitis virus, hantavirus (Seoul virus), influenza virus (H1N1), hepatitis C virus, Theiler’s murine encephalomyelitis virus, HSV-1 and coxsackievirus B3 (CVB3) (5, 16–20).

In this review, we introduce the various mechanisms that impose sexual dimorphism in immune function in males and females. We then discuss the impact of sexually dimorphic immune responses on pathogenesis during viral infections.

Organizational effects of sex hormones on immune function

The initiation of sexual dimorphism occurs through early embryonic development due to effects of genes on sex chromosomes (21, 22). The SRY gene on the Y chromosome

*Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110; †Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and ‡Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110

ORCID: 0000-0001-6785-6362 (S.G.).

Received for publication July 5, 2016. Accepted for publication October 24, 2016.

This work was supported by National Institutes of Health Grants R01 NS052632 and U19 AI083019 and a grant from the National Multiple Sclerosis Society (all to R.S.K.).

Address correspondence and reprint requests to Dr. Robyn S. Klein, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110. E-mail address: rklein@dom.wustl.edu

Abbreviations used in this article: AR, androgen receptor; CVB3, coxsackievirus B3; E2, 17β-estradiol; E3, estriol; ER, estrogen receptor; FCG, four-core genotype; MCMV, murine CMV; pDC, plasmacytoid dendritic cell; RSPO, R-spondin; SLE, systemic lupus erythematosus; SOX9, sex-determining region Y box 9; SRY, sex-determining region Y; Treg, regulatory T cell.

Copyright © 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$30.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1601166
induces male supporting cell precursors to differentiate into testosterone-expressing Sertoli cells, leading to masculinization of all tissues within the developing embryo (23–25). During embryonic development, the increased expression of multiple genes maintains the XX sex phenotype and inhibits expression of all tissues within the developing embryo (23–25). SOX9 can independently induce male-feminization of the male embryo (15). In addition, SOX9 protein downstream of Sry is crucial in inducing male sex phenotype and inhibits the expression of genes, such as SOX9, a transcription factor that favors the XY male phenotype (15). In males, expression of SOX9 protein downstream of Sry exerts its effect in promoting sexual dimorphism independent of sex hormones. X-dosage compensation and escape from X-inactivation influence differential gene expression of innate immune molecules. Y chromosome contributions include Y gene–associated polymorphisms. Studies evaluating sexual dimorphism in immune responses focus on the interdependence of these factors, as well as their independent contributions.

Studies in rodents show that sexual dimorphism in immune function occurs through embryonic development and is maintained postnatally via the actions of gonadal hormones, such as estrogen and testosterone (37–39). Prenatal castration of male mice results in postpubertal thymic involution and aberrant T cell subset differentiation (40). Females exposed to higher concentrations of androgen prenatally as a result of congenital adrenal hyperplasia exhibit less modeling of behavior shown to them by other females, suggesting that gender-related behavior change is due to prenatal hormonal exposure (41). Surprisingly, immune response to heterologous MLR (MLR-A) is unaffected by perinatal masculinization in both sexes and is strongest in unmanipulated females (42, 43). Consistent with this, loss of feminization at prenatal stages leads to decreased T cell/B cell ratios compared with normally feminized mice, whose ratios mirror those observed in male animals (44). Several studies also report the role of gonadotropin-releasing hormone, which maintains early levels of gonadal hormones in both sexes, in the prenatal patterning of the immune system. Postnatal gonadotropin-releasing hormone antagonism, which inhibits expression of gonadal hormones, results in lower numbers of circulating CD8+ T and B cells in male rodents and primates (45). Similar studies in female rats showed reduced numbers of CD4+ T cells and reduced immune responses of thymocytes and splenocytes to T cell–mediated Ag (46, 47). The effects of estrogen and testosterone on B cell development and differentiation also directly influence the production of IgG (48, 49). Prenatal secretion of testosterone limits the ability of males to produce lgs compared with females, who maintain much higher default plasma anti-DNA Ig levels compared with males (2, 50). Additional studies in seagull chicks reveal a reduced T cell and plasma Ig–mediated immunity in prenatal testosterone-treated chicks compared with control chicks (51). Activational effects of hormones at puberty further enhance sex differences in Ab production that are present at birth (see below), leading to persistently higher humoral immune response in females throughout their lifetime.

Activational effects of hormones on immune function

Postpubertal expression of gonadal hormones leads to acute and reversible effects in adulthood that maintain physical and behavioral sex differences (52). Estrogen and progesterone in females and testosterone in males are the prime gonadal hormones secreted during the activational period. The effect of hormonal secretion during this period is not limited to the reproductive system; it extends to multiple tissues, including those of the immune system (53). The androgen testosterone is synthesized in gonadal and adrenal tissues of males and females but is predominantly converted to estrogens via aromatization in the latter (54). Endogenous estrogens produced in female mammals include estrone, 17β-estradiol (E2), and estradiol (E3). E2 is the predominant form in females and is produced by theca and granulosa cells of the ovaries in premenopausal women. The level of hormones secreted in postpubertal female mammals varies in a cyclic fashion to facilitate ovulation and subsequent pregnancy.

Estrogen receptors (ERs) exist in two forms, ERα and ERβ, which bind estrone, E2, and E3 ligands to mediate gene expression. B and T lymphocytes, mast cells, macrophages, dendritic cells, and NK cells predominantly express ERα (55). Hematopoietic progenitor cells express ERα and ERβ (56). Based
on studies in ERα- and ERβ-deficient mice, ERα appears to be the key regulator in the differentiation of hematopoietic progenitor cells (57). Females produce higher levels of estrogen and regulate ER activation on their immune cells, which helps them to exert a stronger humoral and cellular immune response (37, 58).

ERs play vital roles in several signaling pathways, acting as a signal transduction molecule in calcium regulation across cell membranes and inducing activation of G coupled- and other surface receptors, such as receptors that drive expression of insulin growth factor 1 and activation of ERK/MAPK, protein kinase C, PI3K, and cAMP signaling (59, 60). ERs is also required for proper dendritic cell differentiation and CD40-mediated cytokine production (61). Although ERs can impact signaling pathways in ligand-dependent and -independent manners (62), signaling in immune cells is ligand-dependent, whereas signaling through coactivator-associated arginine methyltransferase 1 is ligand independent. E2 receptor (specifically ERα6) mediates anti-inflammatory signaling in monocytes and macrophages through suppression of CXCL8 (63, 64). ERs activate STAT signaling pathways during T and B cell proliferation, maintenance, and activation. Under inflammatory conditions, ER activation also induces NO synthase and IFN-γ expression in T cells. ER ligands also mediate phosphorylation, nuclear localization, and transcriptional activation of STAT1, STAT3, and STAT5 in B cells and circulating monocytes (65, 66). E2 additionally regulates STAT activity by increasing expression of cytokine-inhibitor proteins, such as suppressor of cytokine signaling 1 and 5, in T cells and macrophages (67–70). In macrophages, ER signaling mediates inhibitory responses toward proinflammatory genes regulated by NF-kB, such as IL-6. In contrast, E2 directly suppresses the expression of CCL2 in leukocytes, leading to a reduction in migration (71, 72).

It is well established that ERs play an important role in promoting sexual dimorphism in the neonatal brain through chromatin remodeling, particularly via promoter methylation and acetylation. This process is mediated by ERα activation and dimerization, followed by nuclear translocation, DNA binding through estrogen-response elements, and recruitment of receptor coactivators and corepressors, such as nuclear receptor corepressors, leading to epigenetic modifications and regulation of downstream transcriptional factors (73–75). Current studies on epigenetics also indicate that methylation of the ERα promoter contributes to sex differences in the brain, as well as maintains sexual dimorphism throughout life by creating methyl marks on the DNA of the individual (76). However, direct evidence for ER- or androgen receptor (AR)-mediated epigenetic modifications that contribute to immune cell differentiation and function has not been found.

In addition to endogenous ER ligands, ligands that effect ER signaling are found in environmental sources, including food (e.g., phytoestrogens) and pharmaceuticals (e.g., tamoxifen, toremifene and raloxifene, which are selective ER modulators). Selective ER modulators have been used as therapeutics in multiple sclerosis, ovarian cancer, breast cancer, and Ebola virus infection to suppress the activity of Th1 cells and induce Th2 cytokine expression (77–81). Further studies are required to understand the impact of environmental and exogenous estrogens, either independently or in combination with other factors, on immune function during exposure to pathogens.

Progesterone also mediates stimulatory and suppressive roles in immune responses. Progesterone receptors are primarily expressed by T and NK cells, but recent studies detected them on dendritic and mesenchymal stem cells, where they suppress Th1 cytokine secretion and increase Th2 cytokine secretion (82, 83). Suppression of T cell cytotoxicity, as well as regulatory T cell (Treg) proliferation, is also mediated by progesterone (84). Progesterone also inhibits the activity of NK cells via downregulation of IFN-γ secretion (85). In macrophages, progesterone suppresses NO levels and inhibits FcyR expression and microparticle release, thereby dampening the initial immune response at initial stages of infection. During pregnancy, progesterone enhances immunomodulatory functions of mesenchymal stem cells through upregulation of PGE-2 and IL-6. This is essential in females to maintain the fetal–maternal interface (83).

Most testosterone (98%) is irreversibly converted to an active metabolite, dihydrotestosterone (86), which binds with higher affinity than testosterone to ARs, which are expressed at various levels by leukocytes (87). In innate immune cells, such as neutrophils, AR signaling maintains cellular differentiation via induction of G-CSF signaling through activation of ERK1/2 and STAT3 (88). In wound-healing studies, AR regulates the chemotactic ability of macrophages through upregulation of CCL2, TNF-α, and CCR2 (89). AR signaling also regulates T and B cell function and development. CD4+ thymocytes express lower levels of inducible AR, whereas CD4+CD8+ and CD8+ thymocytes express the highest levels (90). Although AR signaling promotes Th1-mediated T cell immune response, it also acts as an antagonist to NF-κB and IFN type I signaling pathways (91). Specifically, splenic CD4+ and CD8+ T cells express inducible AR that binds to testosterone in males (92). Castration studies revealed that, in the absence of testosterone, AR signaling suppresses the activation of CD4+ and CD8+ T cells via overproduction of IL-2 and IL-2R (47, 93). Moreover, the absence of testosterone leads to dampening of Th1 differentiation from naïve CD4 T cells in autoimmune disease conditions through suppression of IFN-γ and IL-2 expression in males (94, 95).

Sex chromosome complement and immune function

Sex chromosome complement arises from fundamental genetic differences in XX and XY cells that are mediated by several processes, such as X chromosome inactivation, X gene dosage, and epigenetic modifications (96). To maintain X gene dosage in the female blastocyst, one of the X chromosomes is inactivated by formation of Barr bodies in individual cells (97). Barr bodies are formed as a result of Xist gene expression and histone modification, making one of the X chromosomes inactive in every cell (98). This process, which is exclusive to XX somatic cells, is random and leads to cells with active maternal or paternal X and compensates X gene dosages in all somatic cells (14). The gene products of X or Y gene also facilitate epigenetic modifications on the DNA of an individual. SRY interacts with Kruppel-associated box domain transcriptional factor through the high mobility group box on SRY to recruit histone-modifying enzymes, such as histone deacetylase and heterochromatin protein 1, which remodels chromatin (99, 100). Few studies evaluated sexual dimorphism in chromatin remodeling, irrespective of hormonal
influence, and those that did focused on the CNS. Thus, H3 methylation is more prevalent in cortical regions of the brain in males compared with females (101), and histone deacetylase 2 and 4 bound more prevalently to promoters of Est1 and Cyp19a during brain differentiation in males compared with females. This increased interaction leads to stronger deacetylation and higher gene expression (102).

miRNAs are also sexually dimorphic in nature and regulate SRY-related genes. For example, in the prenatal stage, miR-124 is highly expressed in female-supporting cells and suppresses SOX9 gene expression. In contrast, miR-202-5p/3p is highly expressed in males through SOX9, which is generated by male-supporting cells, and is necessary for male sex determination. Data also suggest that miR-202-5p is a direct transcriptional target of SOX9 during testis differentiation (103). Interestingly, miR-124 also was shown to inhibit STAT3 signaling, which suppresses T cell proliferation and leads to Foxp3+ Treg induction, including upregulation of IL-2, IFN-γ, and TNF-α (104, 105). Another study using a murine model of multiple sclerosis found that peripheral administration of miR-124 leads to systemic deactivation of macrophages, reduced activation of myelin-specific T cells, and suppression of disease progression (106). Because research regarding the role of sex chromosome complement in many physiologic and disease processes is still in its early stages, less is known about their contributions to antiviral immunity. However, studies using four-core genotype (FCG) mice, in which the role of XX versus XY genes can be separated from those of gonadal hormonal effects, are providing new insights into the impact of sex chromosome complement on immune responses, particularly during autoimmune diseases.

Female bias in disease expression of autoimmunity is well established, with female/male ratios in systemic lupus erythematosus (SLE) and multiple sclerosis approaching 4:1 and 9:1, respectively. A study of sex chromosome aneuploidy in male subjects expressing an excess X chromosome found that they were at a higher risk for SLE (107). Thus, the X chromosome likely plays a crucial role in disease incidence independently of hormonal effects (107, 108). The FCG mouse model is a novel tool for examining the effect of sex chromosome complements XX or XY on phenotypic sex differences during autoimmune diseases.

Female bias in disease expression of autoimmunity is well established, with female/male ratios in systemic lupus erythematosus (SLE) and multiple sclerosis approaching 4:1 and 9:1, respectively. A study of sex chromosome aneuploidy in male subjects expressing an excess X chromosome found that they were at a higher risk for SLE (107). Thus, the X chromosome likely plays a crucial role in disease incidence independently of hormonal effects (107, 108). The FCG mouse model is a novel tool for examining the effect of sex chromosome complements XX or XY on phenotypic sex differences during autoimmune diseases.

Using FCG mice, XXSry mice were found to display increased susceptibility for SLE and experimental autoimmune encephalomyelitis compared with XY Sry mice. Because both XXSry and XY Sry mice had testes during development, and the only difference between the two groups is the presence of the Y chromosome complement, this study confirmed that sex complement alone could promote susceptibility to diseases, irrespective of the hormonal secretions (52, 108). Further comparison between XX and XY mice found higher levels of IL-13Rα2 and reduced levels of Th2 cytokines in spleen cells isolated from XX mice. These results suggest that subdued Th2 cytokine levels that result from an increase in X linked gene IL-13Rα2 expression could be due to X chromosome complement (108).

Sexually dimorphic immunity to viral infections

Differences in susceptibility to viral infections are likely due to inherent differences in the immune system of females and males. Females mount a stronger immune response to viral infections compared with males as the result of more robust humoral and cellular immune responses (Fig. 2). Clinical studies of viral infections in humans are complicated by the impact of nonbiological factors, such as exposure rates, social behavior, habitat and diet, on viral pathogenesis in a sex-specific fashion. However, studies in a controlled setting suggested that levels of estrogen and testosterone differentially alter the expression of genes involved in innate immunity, such as those encoding TLRs and IFNs, in females and males, thereby contributing to sexual dimorphism in viral infections.

Immune response to viral infections

The innate immune response is the first line of defense against any viral infection. Males and females exhibit a different pattern of response to viral infections. The innate response is primarily mediated by three classes of pattern recognition receptors (PRRs): TLRs, retinoic acid–inducible gene I–like receptors, and nucleotide oligomerization domain–like receptors (110, 111). These PRRs detect viral components, such as genomic DNA, dsRNA, ssRNA, RNA with 5’-triphosphate ends, and viral proteins. TLRs and retinoic acid–inducible gene I–like receptors specifically regulate the production of type 1 IFNs and other cytokines. In contrast, nucleotide oligomerization domain–like receptors regulate...
IL-1β through caspase-1 activation (110, 112, 113). Sexual dimorphism is observed during antiviral responses mediated byTLR and IFN pathways (114, 115). Immune cells in females exhibit a 10-fold higher expression of TLRs compared with males (116). In mammals, the number and activity of innate immune cells, such as monocytes, macrophages, and dendritic cells, are higher in females than in males. As a result, responses to Ags, vaccines, and infections are also higher in females compared with males (3, 117). The adaptive immune response also exhibits many sexual differences in response to viral infections. Depending on the stage of the infection, females exhibit higher inflammatory Th1 and anti-inflammatory Th2 compared with males (3). Additionally, upregulation of anti-inflammatory genes and higher cytotoxic T cell activity are observed in females. Some studies also showed higher numbers of Tregs in females compared with males. Clinical investigations in humans also reported lower instances of CD3+, CD4+, and CD8+:CD8+ ratios in Th cells in males compared with females (44, 118).

DNA virus members of the Herpesviridae family

Like many DNA viruses, herpesviruses replicate within host cell nuclei, with their genome persisting as an episome for the cell nuclei, with their genome persisting as an episome for the rest of the cell's life. The herpesviruses are DNA viruses that cause oral and genital herpes, and rare encephalitis in immunocompromised patients via extensive dissemination to visceral organs and the CNS (119). In males, the T cell–suppressive effects of androgens appear to protect against inflammatory-mediated demyelination infected with HSV-1 (120). Studies in mice showed that E2 treatment increases the chances of survival and decreases vaginal pathology and inflammation in HSV-1–infected females (121). Consistent with this, females infected with HSV generate higher levels of HSV-specific IgG and IgM compared with males (122). Similarly, females infected with HSV-2 are protected against neurologic damage and viral reactivation via virus-specific CD8+ T cell activation (123, 124). Studies in ovariectomized mouse models indicated that progesterone treatment increases the susceptibility to genital HSV-2 infection, whereas estrogen treatment helps to clear the infection rapidly. Interestingly, combined treatment with estrogen and progesterone in ovariectomized mice resulted in increased infection spread that was accompanied by persistent inflammation and neutrophil infiltration (125, 126). Although studies do not directly indicate the organizational effect, the effect of estrogen and progesterone in ovariectomized animals suggests an effect of sex hormones in HSV-2 infection.

CMV and murine CMV. CMV, a member of the Herpesviridae family with a large genome, causes systemic viral infections in immunocompetent individuals that may be devastating and life-threatening in the immunocompromised (127). Knowledge of sexual dimorphism in CMV infection stems from experiments in murine CMV (MCMV), which is genetically similar to CMV and has been used to study the pathogenesis of CMV in mouse models. In MCMV-infected female mice, IFN-α/β production by splenic plasmacytoid dendritic cells (pDCs) controls viral replication and is required to prevent viral reactivation (128). Studies in MyD88−/− mice infected with MCMV showed suppression of TLR9 signaling in neutrophils of female mice, which was associated with increased viral replication (129). Additionally, CD4+ T cell–mediated responses, including expression of TNF-α, IL-12, IL-6, and IFN-γ, which are required for clearance of CMV, are also mediated primarily by TLR9 signaling, which is decreased in females (130, 131).

RNA viruses

RNA viruses may replicate in either the nucleus or the cytoplasm and, except for HIV-1, are generally cleared by host adaptive immune responses. In this article we outline sexually dimorphic immune responses to clinically relevant RNA viruses.

Hantavirus. Hantavirus is a negative-sense RNA virus of the Bunyaviridae family that predominantly infects rodents. Airborne transmission of virus occurs in humans by exposure to rodent urine, feces, and saliva and leads to hantavirus pulmonary syndrome, a severe respiratory disease that may be fatal (132). Male rats infected with the Seoul virus strain exhibit higher viral burdens in target organs and shed virus for a longer duration than do similarly infected female animals (16, 133, 134). Accordingly, antiviral and proinflammatory factors, such as Trp, MyD88, Ifn-β, TNF-α, and Ccl5, are more highly expressed in female rodents (16, 135). Consistent with this, acute infection with Puuma virus strain in humans is associated with higher concentrations of IL-9 and GM-CSF in females compared with males (136, 137).

CVB3. Coxackieviruses (genus Enterovirus) belong to the Picornaviridae family of positive-sense ssRNA viruses. CVB3 infection leads to myocarditis during the acute and chronic phases, which affects more males than females, with double the mortality in infected individuals under the age of 40 (138). Cardiomyocytes are directly infected by CVB3 during the acute phase, which is followed by a chronic phase with a prolonged T cell–mediated immune response and persistence of CVB3 within the heart (139). Coxackievirus AR is required for CVB3 entry into cardiomyocytes (140). Chronic-phase CVB3 myocarditis is an autoimmune disease that requires Th17 cells and whose differentiation and expression of IL-17 are suppressed by estrogen, making females less susceptible (138, 141). In contrast, lack of estrogen and the presence of testosterone induce Th17 cell differentiation in CVB3-infected males, enhancing autoimmune-mediated cardiac damage. In females, Th2- and Treg-mediated immune responses, which are increased through ERs signaling in T cells and macrophages in heart tissues, suppress CVB3-mediated immunopathology while clearing infection (139, 142). A recent study also indicates that sex chromosome complement plays a significant role in survival from CVB3 infection. Survival of CVB3-infected B6-ChrY consomic male mice was exclusively dependent on the VcVB3 loci on chromosome Y and independent of prenatals or adult testosterone (24). In summary, the immune make-up of the males and the presence of male sex steroid testosterone promote the spread of CVB3, leading to myocarditis. Sex complement, as well as the activation effect of hormones, contributes to CVB3 pathogenesis.

Influenza. The incidences of H5N1 avian influenza and H1N1 and H2N2 pandemic influenza, RNA viruses that cause severe, inflammatory-induced respiratory diseases, all demonstrate...
1788 BRIEF REVIEWS: SEX DIFFERENCES IN VIRAL INFECTIONS

The Journal of Immunology

73. Seidenbichler, P. M., and M. McCarthy. 2010. Developmental and hormone-induced epigenetic changes to estrogens and progesterone receptor genes in brain are dynamic across the life span. Endocrinology 151: 4871–4881.

established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation. J. Immunol. 172: 392–397.

