T-bet:Eomes Balance, Effector Function, and Proliferation of Cytomegalovirus-Specific CD8⁺ T Cells during Primary Infection Differentiates the Capacity for Durable Immune Control

Iulia Popescu, Matthew R. Pipeling, Pali D. Shah, Jonathan B. Orens and John F. McDyer

J Immunol 2014; 193:5709-5722; Prepublished online 22 October 2014;
doi: 10.4049/jimmunol.1401436
http://www.jimmunol.org/content/193/11/5709

Supplementary Material

http://www.jimmunol.org/content/suppl/2014/10/21/jimmunol.1401436.DCSupplemental

References

This article cites 47 articles, 19 of which you can access for free at:
http://www.jimmunol.org/content/193/11/5709.full#ref-list-1

Why *The JI*? Submit online.

- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
T-bet:Eomes Balance, Effector Function, and Proliferation of Cytomegalovirus-Specific CD8⁺ T Cells during Primary Infection Differentiates the Capacity for Durable Immune Control

Iulia Popescu,*1 Matthew R. Pipeling,*1 Pali D. Shah, † Jonathan B. Orens, † and John F. McDyer*

CMV remains an important opportunistic pathogen in solid organ transplantation, particularly in lung transplant recipients (LTRs). LTRs mismatched for CMV (donor+/recipient−; D+R−) are at high-risk for active CMV infection and increased mortality, however the immune correlates of viral control remain incompletely understood. We prospectively studied 23 D+R− LTRs during primary CMV infection to determine whether acute CD8⁺ T cell parameters differentiated the capacity for viral control in early chronic infection. T-box transcription factors expression patterns of T-bet > Eomesodermin (Eomes) differentiated LTR controllers from viremic relapsers and reciprocally correlated with granzyme B loading, and CMV phosphoprotein 65 (pp65)–specific CD8⁺IFN-γ and CD107a⁺ frequencies. LTR relapsers demonstrated reduced CD8⁺Ki67⁺ cells ex vivo and substantially impaired CD8⁺pp65-specific in vitro proliferative responses at 6 d, with concomitantly lower pp65-specific CD4⁺IL-2⁺ frequencies, as compared with LTR controllers. However, CMV-specific in vitro proliferative responses could be significantly rescued, most effectively with pp65 Ag and exogenous IL-2, resulting in an increased T-bet:Eomes balance, and enhanced effector function. Using class I CMV tetramers, we observed similar frequencies between relapsers and controllers, although reduced T-bet:Eomes balance in tetramer⁺ cells from relapsers, along with impaired CD8⁺ effector responses to tetramer-peptide restimulation. Taken together, these data show impaired CMV-specific CD8⁺ effector responses is not for complete lack of CMV-specific cells but rather underscores the importance of the T-bet:Eomes balance, with CMV-specific proliferation a key factor driving early T-bet expression and effector function in CD8⁺ T cells during primary infection and differentiating the capacity of high-risk LTRs to establish immune control during early chronic infection. The Journal of Immunology, 2014, 193: 5709–5722.
tive to T-bet and its relationship to CD8+ T cell effector function, has not been elucidated in human acute primary viral infection. We hypothesized the balance of T-bet:Eomes expression in CD8+ T cells would differ in relaper versus controller LTRs and impact acute primary effector function in CD8+ T cells.

In this paper, we report that the T-bet: Eomes balance in total CD8+ T cells and CMV-specific CD8+tetramer+ cells differentiates D+R− LTR relapers versus controllers, with T-bet and Eomes reciprocally correlating to CD8+ effector function and proliferation. Importantly, LTR relapers with reduced T-bet expression demonstrated impaired CD8+ CMV pp65-specific in vitro proliferative responses, along with diminished CD4+ pp65-specific IL-2 secretion. Unexpectedly, exogenous IL-2 treatment in the presence of CMV Ag significantly rescued impaired CMV-specific proliferative responses, along with diminished CD4+ pp65-specific IL-2 secretion. These findings show the T-bet:Eomes balance and in vitro CMV-specific effector and proliferative responses in CD8+ T cells during primary CMV infection differentiate the capacity of high-risk LTRs to establish durable immune control during early chronic infection.

Materials and Methods

Study subjects

D+R− LTRs from the Johns Hopkins Lung Transplant Program were identified and provided informed written consent for participation in a Johns Hopkins Medicine Institutional Review Board–approved protocol. All patients were treated with standard three-drug immunosuppression.

Antiviral prophylaxis with ganciclovir and/or valganciclovir was used for the initial 3 mo after transplant. Patients were prospectively monitored at least weekly for the development of primary CMV infection (defined as de novo detection of viral replication by quantitative PCR). CMV viral loads were determined using quantitative PCR of plasma by the Johns Hopkins Hospital Clinical Virology Laboratory. Patients developing primary CMV infection were treated with antiviral therapy (ganciclovir and/or valganciclovir) until two consecutive weekly quantitative CMV PCR measurements revealed undetectable viremia. Following completion of antiviral therapy for primary infection, patients continued to be prospectively monitored with quantitative CMV PCR measured at least biweekly, as well as during any symptomatically or clinically indicated time points, for the development of relapsing viremia (defined as the detection of >300 copies/ml of CMV by quantitative PCR on two consecutive samples after the completion of antiviral therapy for primary infection). Patients with relapsing viremia received antiviral therapy (ganciclovir and/or valganciclovir) if clinically indicated.

Tissue samples

Blood samples from LTRs were obtained prior to the discontinuation of initial antiviral prophylaxis (time point referred to as “pre-CMV”) and within 5–14 d of detection of de novo viremia (time point referred to as “primary CMV”). PBMC were isolated from heparinized blood samples by density gradient centrifugation using Ficoll-Paque (GE Healthcare) to be used in subsequent assays. All patients had therapeutic levels of calcineurin inhibitors at the time of sampling.

Ag restimulation

Single pools of overlapping 15-mer peptides for pp65 (JPT, Berlin, Germany) or HLA class I CMV tetramer-matching peptides (A*01 VTEHDTL, A*02 NLVPMVAT, B*07 TPRTVGGAM, and B*08 ELRKKMYYM) (IBA Solution for Life Sciences) were used. PBMC were cultured in round-bottom tissue culture tubes (Sarstedt) in the presence or absence (medium alone) of pooled pp65 peptides (1 μg/ml) or HLA class I tetramer matching.

Table I. Patient characteristics and clinical phenotypes following primary CMV infection in D+R− LTRs

<table>
<thead>
<tr>
<th>LTR</th>
<th>Age (y)</th>
<th>Gender</th>
<th>Primary Diagnosis</th>
<th>Immunosuppression at Primary CMV Onset</th>
<th>Primary CMV Onset</th>
<th>Relapsing Viremia</th>
<th>Viral Loadb (DNA Copies/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>60</td>
<td>F</td>
<td>Idiopathic pulmonary fibrosis</td>
<td>TAC 3.5, MMF 1.2, Pred 1.0x10^4</td>
<td>157</td>
<td>—</td>
<td>1.220</td>
</tr>
<tr>
<td>24</td>
<td>31</td>
<td>F</td>
<td>Cystic fibrosis</td>
<td>TAC 1.5, MMF 0.5, Pred 1.0x10^3</td>
<td>96</td>
<td>+</td>
<td>51.100</td>
</tr>
<tr>
<td>25</td>
<td>34</td>
<td>F</td>
<td>Primary pulmonary hypertension</td>
<td>TAC 4.2, MMF 0.5, Pred 1.0x10^3</td>
<td>129</td>
<td>—</td>
<td>16.900</td>
</tr>
<tr>
<td>28</td>
<td>33</td>
<td>F</td>
<td>Cystic fibrosis</td>
<td>TAC 6.2, MMF 0.5, Pred 1.0x10^3</td>
<td>210</td>
<td>—</td>
<td>1.260</td>
</tr>
<tr>
<td>29</td>
<td>62</td>
<td>F</td>
<td>COPD</td>
<td>TAC 2.5, MMF 0.5, Pred 1.0x10^3</td>
<td>168</td>
<td>+</td>
<td>47.700</td>
</tr>
<tr>
<td>30</td>
<td>61</td>
<td>F</td>
<td>Idiopathic pulmonary fibrosis</td>
<td>CSA 175/100, RAPA 1.0, Pred 1.0x10^3</td>
<td>94</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>55</td>
<td>M</td>
<td>Cystic fibrosis</td>
<td>TAC 3.2, AZA 0.5, Pred 1.0x10^4</td>
<td>248</td>
<td>—</td>
<td>3.930</td>
</tr>
<tr>
<td>33</td>
<td>51</td>
<td>F</td>
<td>Idiopathic pulmonary fibrosis</td>
<td>TAC 2.3, MMF 0.5, Pred 1.0x10^4</td>
<td>186</td>
<td>+</td>
<td>1.090</td>
</tr>
<tr>
<td>34</td>
<td>59</td>
<td>F</td>
<td>COPD</td>
<td>TAC 4.2, MMF 0.5, Pred 1.0x10^3</td>
<td>174</td>
<td>—</td>
<td>2.710</td>
</tr>
<tr>
<td>35</td>
<td>27</td>
<td>M</td>
<td>Cystic fibrosis</td>
<td>TAC 1.2, MMF 0.5, Pred 1.0x10^4</td>
<td>219</td>
<td>—</td>
<td>1.258</td>
</tr>
<tr>
<td>36</td>
<td>49</td>
<td>F</td>
<td>Idiopathic pulmonary fibrosis</td>
<td>TAC 4.2, MMF 0.5, Pred 1.0x10^3</td>
<td>167</td>
<td>+</td>
<td>9.070</td>
</tr>
<tr>
<td>37</td>
<td>56</td>
<td>F</td>
<td>Obliterative bronchiolitis</td>
<td>TAC 5.2, MMF 0.5, Pred 1.0x10^4</td>
<td>133</td>
<td>—</td>
<td>9.400</td>
</tr>
<tr>
<td>38</td>
<td>56</td>
<td>M</td>
<td>COPD</td>
<td>TAC 1.3, MMF 1.0, Pred 1.0x10^4</td>
<td>135</td>
<td>—</td>
<td>2.010</td>
</tr>
<tr>
<td>40</td>
<td>54</td>
<td>F</td>
<td>COPD</td>
<td>TAC 1.5, MMF 0.5, Pred 1.0x10^4</td>
<td>122</td>
<td>—</td>
<td>32.400</td>
</tr>
<tr>
<td>41</td>
<td>64</td>
<td>F</td>
<td>Bronchiectasis</td>
<td>TAC 4.2, MMF 0.5, Pred 1.0x10^3</td>
<td>184</td>
<td>—</td>
<td>23.500</td>
</tr>
<tr>
<td>42</td>
<td>37</td>
<td>F</td>
<td>Sarcoïdosis</td>
<td>TAC 5.5, MMF 0.5, Pred 1.0x10^4</td>
<td>138</td>
<td>—</td>
<td>19.600</td>
</tr>
<tr>
<td>43</td>
<td>51</td>
<td>M</td>
<td>Sarcoïdosis</td>
<td>TAC 4.2, MMF 0.5, Pred 1.0x10^4</td>
<td>83</td>
<td>+</td>
<td>1.490</td>
</tr>
<tr>
<td>45</td>
<td>21</td>
<td>M</td>
<td>Cystic fibrosis</td>
<td>TAC 2.5, MMF 0.5, Pred 1.0x10^4</td>
<td>92</td>
<td>—</td>
<td>4.840</td>
</tr>
<tr>
<td>46</td>
<td>59</td>
<td>M</td>
<td>COPD</td>
<td>TAC 1.5, MMF 1.0, Pred 2.0x10^3</td>
<td>37</td>
<td>+</td>
<td>49.500</td>
</tr>
<tr>
<td>48</td>
<td>47</td>
<td>M</td>
<td>Idiopathic pulmonary fibrosis</td>
<td>TAC 2.2, MMF 0.5, Pred 1.0x10^3</td>
<td>162</td>
<td>+</td>
<td>27.331</td>
</tr>
<tr>
<td>50</td>
<td>64</td>
<td>M</td>
<td>Idiopathic pulmonary fibrosis</td>
<td>TAC 0.5, MMF 0.5, Pred 1.0x10^3</td>
<td>127</td>
<td>—</td>
<td>14.194</td>
</tr>
<tr>
<td>51</td>
<td>41</td>
<td>F</td>
<td>Pulmonary hypertension</td>
<td>TAC 2.5, MMF 0.5, Pred 1.0x10^4</td>
<td>214</td>
<td>—</td>
<td>1.675</td>
</tr>
<tr>
<td>53</td>
<td>35</td>
<td>F</td>
<td>Cystic fibrosis</td>
<td>TAC 2.5, MMF 0.5, Pred 1.0x10^3</td>
<td>125</td>
<td>+</td>
<td>47.913</td>
</tr>
<tr>
<td>Summaryc</td>
<td>48.13</td>
<td>F 65.2%</td>
<td>—</td>
<td>148.70 + 34.7%</td>
<td>19,830.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aDays posttransplant.

bViral load at time of sampling.

cValues represent medians or percentage of indicated group.

AZA, azathioprine (dose in milligrams); COPD, chronic obstructive pulmonary disease; CSA, cyclosporine (dose in milligrams); F, female; M, male; MMF, mycophenolate mofetil (dose in grams); Pred, prednisone (dose in milligrams); RAPA, sirolimus (dose in milligrams); TAC, tacrolimus (dose in milligrams with superscript times per day).
tetramer matching peptides or the positive control of staphylococcal enterotoxin B (SEB; 1 μg/ml). All stimulations for intracellular cytokine production were performed using 10^6 cells per condition for 6 h at 37°C with brefeldin A (10 μg/ml) (Sigma-Aldrich) added for the final 4 h of culture. Monensin (5 μg/ml) along with brefeldin A and anti-CD107a-Pacific Blue (Pac Blue) was added at the beginning of culture when CD107a was measured. All cells were collected for flow cytometry analysis with a range of 0.5–1×10^6 total events collected per condition. All gates for cytokine frequencies were set using the medium alone control and subtracted from peptide restimulated samples frequencies. In certain experiments, cells were restimulated in vitro as indicated above and labeled with CFSE (0.2 μM; Invitrogen) and cultured for 6 d, with/without pp65 peptides in the presence or absence of exogenous IL-2 (10 IU; Roche). Cell cultures were harvested at day 6, washed, rested overnight in medium alone, and secondary restimulation performed in the presence or absence of CMV pp65 peptides for 6 h (according to primary cultures were pulsed/unpulsed with peptide) and assessed for proliferation via CFSE dilution and cytokine by intracellular cytokine staining (ICS). Cell fluorescence was analyzed using a LSR Fortessa cytometer equipped with a UV laser (BD Biosciences), and anti–Eomes-Alexa-Fluor 647 (eBioscience). The Journal of Immunology 5711

FIGURE 1. Significant induction of T-bet and Eomes in peripheral CD8^+ T cells during primary CMV infection. (A) Representative flow cytometric plots (LTR#35) of gating strategy used to analyze the numbers of PBMC, CD8^+, or CD4^+ T cells from prospective cohort of 23 D+R—LTRs patients. Gating was done on PBMC cells with doublet exclusion, then gating on live/CD3^+ T cells, and then on subsets of CD4^+ or CD8^+ T cell populations. Numbers indicate frequencies of populations gated. Plots are representative of 23 D+R—LTRs patients analyzed from individuals during CMV infection. (B) Representative flow cytometric plots showing the intracellular protein expression of T-bet (LTR#45) and Eomes (LTR#38) during a CMV-naive posttransplantation period prior to discontinuation of prophylaxis (left panels, pre-CMV) and at the time of primary infection (right panels, primary CMV). Pooled data showing the frequencies of PBMC CD8^+T-bet^+ (C) and CD8^+Eomes^+ (D) during pre-CMV (○) and primary CMV infection (●) from 23 patients. Bars represent median values, and p values were calculated using the Wilcoxon signed-rank test. ****p < 0.0005.

Flow cytometry

Following in vitro restimulation, cells were surface stained with fluorochrome-labeled Abs anti–CD3-Alexa-Fluor700, anti–CD8-V500, and anti–CD4-allophycocyanin Cy7 (BD Biosciences, BioLegend). In addition, HLA class I CMV tetramers-PE labeled (A*01 VTE, A*02 NLV, B*07 TPR, B*08 ELR, and B*035 IPS) (Beckman Coulter or IBA Solution for Life Sciences), and Live/Dead Fixable Blue Dead-Cell Stain (Invitrogen) were used for gating on viable cells. In some experiments, we used surface-stained with fluorochrome-labeled Abs anti–PD1-FITC and anti–CD160-PE Cy7 (BD Biosciences, BioLegend). Cytofix/Cytoperm (BD Biosciences) reagents were used to fix and permeabilize cells for ICS using anti–IFN-γ-PE Cy7 (or BV605), anti–IL-2-FITC, anti–granzyme B-PE CF 594, anti–CD107a-Pacific Blue, anti–T-bet-PE or BV655 (BD Biosciences), and anti–Eomes-Alexa-Fluor 660 (eBioscience).

Statistical analysis

Statistical analysis was performed using the GraphPad Prism software. Because no assumption was made regarding the Gaussian distribution of measured variables, the nonparametric tests of Wilcoxon signed-rank, Mann–Whitney–Wilcoxon, and Spearman’s rank correlation were used. A two-tailed p value < 0.05 was considered statistically significant.

Results

Patient characteristics and clinical phenotypes during and following primary CMV infection in D+R—LTRs

In this study, we evaluated the peripheral CD8^+ T cell responses in a prospective cohort of 23 D+R—LTRs, whose clinical characteristics are shown in Table I. With close prospective monitoring (see Materials and Methods), we detected primary CMV infection at a median of 149 d posttransplant (~60 d after discontinuation of CMV prophylaxis) in our cohort. We continued prospective monitoring after completion of antiviral therapy and detected relapsing viremia in a subset of 8 LTRs (35%) within the first 6 mo of early chronic infection, in contrast to the remaining 15 LTRs who demonstrated immune control. Those patients with relapsing viremia had a median viral load of 2342 copies/ml, occurring at a median 80 d after initial detection of primary infection. Seven of eight relapers required additional treatment with antiviral therapy. All episodes of relapsing viremia occurred independent of acute rejection episodes, augmented immunosuppression, or other active infections. Also of note is that during acute primary CMV infection, relapers demonstrated reduced absolute numbers of total lymphocytes and CD8^+ lymphocytes compared with controllers (Supplemental Fig. 1). In addition, there was no clinical
evidence of ganciclovir-resistant CMV infection in any LTR relapsers.

Increased CD8+Eomes+ T cells and reduced T-bet:Eomes CD8+ T cell ratio in high-risk LTRs with relapsing viremia following primary CMV infection

We previously demonstrated T-bet is significantly induced in CD8+ T cells during primary CMV infection (10). To further characterize the development of CD8+ T cell effector responses to CMV, we evaluated protein expression of another T-box transcription factor, Eomes, along with T-bet during a CMV-naive post-transplantation period prior to discontinuation of antiviral prophylaxis and during primary infection. Using the PBMC gating strategy shown in Fig. 1A, we observed a marked increase in the frequencies of CD8+ T cells expressing Eomes and T-bet during primary CMV infection compared with pre-CMV time point (Fig. 1B). Analysis of the entire cohort revealed significant increases in CD8+T-bet+ (Fig. 1C) and CD8+Eomes+ (Fig. 1D) during primary infection.

Next, we compared acute CD8+ T-bet and Eomes expression in relapsers versus controllers. Relapsers demonstrated significantly higher frequencies of CD8+Eomes+ T cells compared with controllers and in contrast to reduced frequencies of CD8+T-bet+ T cells (Fig. 2A, 2B). We also observed variable frequencies of single T-bet+- and/or Eomes+-CD8+ T cells among the two clinical phenotypes during primary infection (Fig. 2C), with controllers

FIGURE 2. Increased CD8+Eomes+ T cells and reduced T-bet:Eomes CD8+ T cell ratio in high-risk LTRs with relapsing viremia following primary CMV infection. (A) Representative flow cytometric plots showing the intracellular protein expression of the CD8+“Tbet” and CD8+“Eomes” transcription factors during primary infection from an LTR relaper (LTR#29) (left panel) and LTR controller patient (LTR#37) (right panel). The gating strategy of the flow cytometric plots was done on PBMC with doublet exclusion, then gating on live/CD3+ T cells, and CD3+“Tbet” or CD3+“Eomes”, then the subsets of CD8+“Tbet” and CD8+“Eomes” T cell populations, and the numbers indicate frequencies of each cells gated (%). Plots are representative of 23 D+R− LTRs patients analyzed from individuals during CMV infection. (B) Pooled data showing the frequencies of PBMC CD8+“Tbet” (left panel) and CD8+“Eomes” (right panel) transcription factors expression during primary CMV infections from cohort in those with relapsing viremia (n = 8 “relapers”) - (red dots) versus those without (n = 15 “controllers”) - (blue dots). (C) Pooled data showing pie charts of cumulative frequencies of single T-bet and/or Eomes expression in the CD8+ T cell pool in the LTR cohort during primary CMV from controllers (n = 15) (right pie chart) and relapers (n = 8) (left pie chart). (D) Pooled data showing the T-bet:Eomes+ CD8+ T cell ratio in relapers (red columns) versus controllers (blue columns) from the total LTR cohort. Bars represent median values, and p values were calculated using the Wilcoxon signed-rank test or the Mann–Whitney–Wilcoxon t test where appropriate. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001. C, controller; R, relaper.
demonstrating increased frequencies of T-bet+CD8+ T cells and T-bet+Eomes+CD8+ T cells versus relapsers. In contrast, we observed significantly increased frequencies of T-bet+Eomes+ CD8+ T cells in relapsers compared with controllers. Next, we determined that the T-bet:Eomes CD8+ T cell ratio differentiated the two clinical phenotypes, with controllers demonstrating significantly increased T-bet:Eomes CD8+ T cell ratios (median 1.98 compared with 0.34 in relapers, p < 0.0001; Fig 2D). Taken together, these data show the balance of induction of T-bet, relative to Eomes in the CD8+ T cell pool differentiates high-risk LTR clinical phenotypes.
Acute CD8+ T cell granzyme B loading and pp65-specific IFN-γ/CD107α responses are driven by T-bet and differentiates controllers from relapers during early chronic CMV infection

Cytotoxic T cell effector function is critical for viral control during chronic infection (14, 15). Therefore, we examined the relationship between T-bet and Eomes induction and CD8+ T cell function during acute primary infection. We confirmed our previous findings of a positive correlation between acute T-bet+ and pp65-specific IFN-γ/CD8+ T cell responses, but in contrast, observed an inverse correlation between acute Eomes+ and pp65-specific IFN-γ/CD8+ T cell responses (Fig. 3). We also found the frequencies of CD4+ T cells from LTR relapers producing IFN-γ (Fig. 3D) in response to pp65 peptides were significantly reduced compared with LTR controllers during acute primary infection. In addition, the CD8+ T cell loading of the cytotoxic molecule granzyme B (GrzB) during acute primary infection is significantly increased compared with pre-CMV (Fig. 4A), and levels are increased in controllers compared with relapers (Fig. 4B). We compared acute CD8+T-bet+ levels with acute CD8+GrzB+ levels and observed a significant correlation during primary CMV infection (Fig. 4C, left panel), although unexpectedly, we observed an inverse relationship between CD8+GrzB+ and CD8+Eomes+ frequencies (Fig. 4C). Next, we assessed CD107a mobilization as a surrogate for cytotoxic molecule degranulation (16) in response to the major CMV Ag pp65 (Fig. 5). We found significant coexpression of CD107a with IFN-γ and increased frequencies of CMV pp65–specific CD8+CD107α+ cells during primary infection in LTR controllers compared with relapers (Fig. 5A, 5B). We then performed scatterplot analysis of CD8+T-bet+ and pp65-specific CD8+CD107+ frequencies and observed a significant correlation (Fig. 5C). In contrast, we observed an inverse correlation between CD8+Eomes+ and pp65-specific CD8+CD107+ frequencies (Fig. 5C). We should also mention that in a minority (∼25%) of patients, CD8+ T-bethi and CD8+T-betint populations could be elucidated, with increased CMV-specific IFN-γ and CD107α+ frequencies associated with the T-betint cells in controllers but not in relapers (Supplemental Fig. 2). Taken together, these data indicate that acute primary GrzB loading in CD8+ T cells and pp65-specific CD8+CD107+ and IFN-γ+ responses are positively correlated with T-bet, but not Eomes, and differentiate the capacity for durable immune viral control in high-risk LTRs during early chronic CMV infection.

LTR relapers demonstrate impaired CMV pp65–specific proliferative and CD4+IL-2+ responses compared with controllers during acute primary CMV infection

Proliferative expansion of Ag-specific CD8+ T cells during acute viral infection is critical to establish a functional effector pool to promote viral clearance and establish T cell memory. Therefore, we asked whether acute proliferative responses differed between LTR relapers and controllers. First, we evaluated ex vivo Ki-67 protein, a marker for proliferation associated with rRNA transcription in CD8+ T cells during acute infection. We detected significantly increased Ki-67+ cells in CD8+ T cells in controllers compared with relapers (Fig. 6A, 6B). We then assessed day 6 CMV-specific proliferation using CFSE dilution in response to pp65-pooled peptides, and found significantly higher pp65-specific proliferation in LTR controllers compared with relapers (Fig. 6C, 6D). In addition, we detected increased T-bet expression in proliferating pp65-specific CD8+ T cells in LTR controllers over relapers (Fig. 6E), and a positive correlation between CD8+T-bet+ levels and CD8+ pp65–specific proliferative responses (Fig. 6F), but in striking contrast, a reciprocal relationship with CD8+Eomes+ levels (Fig. 6G). Furthermore, we analyzed CMV...
plasma viral loads and found that CD8+ pp65–specific proliferation was unrelated to the level of viremia at the time of sampling during acute infection (Supplemental Fig. 3). Last, there were no significant differences in calcineurin inhibitor levels during acute infection between relapsers and controllers (data not shown).

Collectively, our data demonstrate impaired CMV-specific CD8+ T cell proliferative responses in LTR relapsers versus controllers and provide evidence that acute CD8+ T-bet+ levels are significantly coupled to CMV-specific CD8+ T cell proliferative capacity.

The T cell growth factor, IL-2, is a key driver of T cell proliferation and a central target of calcineurin inhibitor therapies such as cyclosporine A and tacrolimus. On the basis of our findings of impaired pp65-specific CD8+ T cell proliferation during primary infection, we hypothesized that CD4+ T cells, the major source of IL-2, were impaired in their ability to secrete IL-2 in response to pp65-Ag. We found the frequencies of CD4+ T cells from LTR relapsers producing IL-2 (Fig. 6H, 6I) and/or IFN-γ (Figs. 3D, 6H) in response to pp65 peptides were significantly reduced compared with LTR controllers during acute primary infection concomitant with pp65-specific CD8+ proliferative responses. In contrast, the frequencies of CD8+ T cells from LTR relapsers producing IL-2 were lower but not significantly different from LTR controllers (Fig. 6J). In addition, the frequencies of CD4+ T cells from LTR relapsers producing IL-2 and/or IFN-γ in response to the superantigen SEB were significantly reduced compared with LTR controllers during primary infection indicative of a more global functional immune defect (data not shown). Taken together, our findings identify concomitant CMV-specific CD4+ T cell defects in LTR relapers during acute CMV that likely contribute to an impaired ability to mount CMV-specific CD8+ proliferation.

Ag and exogenous IL-2 rescues impaired CMV-specific CD8+ proliferation, the CD8+ T-bet:Eomes ratio, and effector function

Previous studies have shown adoptive T cell therapy can be effective in controlling active CMV infection (17). Successful ex vivo expansion of CMV-specific cells from autologous patient PBMCs could provide broad HLA-restricted specificities to a major Ag such as pp65 compared with single HLA-restricted, matched donor–derived cells. Because we found impaired CMV-specific CD4+IL-2+ responses in relapsers, we asked whether reduced CD8+ CMV-specific proliferative responses and T-bet induction could be rescued in vitro with low-dose exogenous IL-2 in the presence or absence of Ag. The addition of exogenous IL-2 (10 IU) to day-6 cultures significantly enhanced CD8+ pp65–specific proliferative responses measured by CFSE dilution (Fig. 7A, 7B). We also measured T-bet, Eomes, and Grz B in CD8+ T-cells at day 6 and found enhanced expression in cultures pulsed with pp65 Ag and IL-2 (Fig. 7C–F). Moreover, the T-bet:Eomes ratio was significantly increased in relapser CD8+ T cells in cultures pulsed with pp65 peptide in the presence of IL-2 compared with cultures in medium and/or IL-2 alone (Fig. 7G). Next, using the same primary culture conditions, we performed secondary restimulation after 6 d and found enhanced expression in cultures pulsed with pp65 Ag and IL-2 (Fig. 7C–F). Moreover, the T-bet:Eomes ratio was significantly increased in relapser CD8+ T cells in cultures pulsed with pp65 peptide in the presence of IL-2 compared with cultures in medium and/or IL-2 alone (Fig. 7G). Next, using the same primary culture conditions, we performed secondary restimulation after 6 d and found significant increases in CD8+ pp65-specific IFN-γ+ and CD107a+ frequencies, most demonstrably in cultures pulsed with pp65 and IL-2 (Fig. 8). Collectively, these data demonstrate that impaired CD8+ T cell responses in LTR relapers can be rescued most efficiently in vitro in the presence of pp65 Ag and exogenous IL-2, leading to...
FIGURE 6. LTR relapers demonstrate impaired CMV pp65-specific proliferative responses compared with controllers during acute primary CMV infection. (A) Representative flow cytometric plots showing CD3^+CD8^+Ki-67^+ responses during primary infection from a relaper (LTR#33) (left panel) and a controller (LTR#45) (right panel). (B) Pooled data showing the frequencies of CD8^+Ki-67^+ during primary CMV infection with relapers (red column) versus controllers (blue column). Bars represent median values ± SEM, and p values were calculated using Mann–Whitney t test. (C) Representative flow cytometric plots of day-6 proliferative responses using CFSE dilution in response to CMV pp65 pooled-peptides during primary infection from a relaper (LTR#53) (left panel) and a controller patient (LTR#38) (right panel) from the LTR cohort. (D) Pooled data showing the frequencies of pp65-specific CD8^+ day-6 proliferation (CFSE dilution minus medium alone) during primary CMV infection from relapers (red column) versus controllers (blue column). Bars represent median values ± SEM, and p values were calculated using the Mann–Whitney t test. (E) Representative flow cytometric plots showing the correlation of pp65-specific CD8^+ proliferation and CD8^+Tbet^+ or (G) CD8^+Eomes^+ during primary CMV infection in relapers (red dots) versus controllers (blue dots) from the LTR cohort. Correlation coefficients (R) and p values were calculated using the Spearman rank correlation test. (H) Representative flow cytometric plots showing the frequencies of blood CD4^+IFNγ^+ and/or CD4^+IL-2^+ cells in response to pp65 pooled-peptides during primary infection from a relaper (LTR#53) (left panel) and a controller patient (LTR#51) (right panel). (I) Pooled data showing pp65-specific CD4^+IL-2^+ frequencies (minus medium alone) in relapers (n = 8; red dots) versus controllers (n = 8; blue dots). (J) Pooled data showing pp65-specific CD8^+IL-2^+ frequencies (minus medium alone) in relapers (n = 8; red dots) versus controllers (n = 8; blue dots). **p < 0.005, ***p < 0.0005, ****p < 0.0001. C, controller; R, relaper.
FIGURE 7. Ag and exogenous IL-2 rescues impaired CMV-specific CD8\(^+\) proliferative responses and increases the CD8\(^+\) T-bet:Eomes ratio and granzyme B loading. (A) Representative flow cytometric plots of CD3\(^+\)CD8\(^+\) day-6 proliferation (by CFSE dilution) in cultures with/without pp65 peptides in the presence or absence of exogenous IL-2 (10 IU). Shown are representative results from eight relapsers patients (LTR#46). (B) Pooled data showing day-6 CD8\(^+\) proliferation (CFSE dilution) during primary CMV infection from eight relapser patients under culture conditions described in (A). Bars represent median values, and \(p\) values were calculated using the Wilcoxon signed-rank test. (C) Representative flow cytometric histograms of intracellular expression of transcription factors T-bet (left panel), Eomes (middle panel), and GrzB (right panel) in cultures of a relapser patient (LTR#33), where medium alone (gray filled histograms), pp65 peptide-stimulated (red line histograms), medium+IL-2 (green filled histograms), and pp65 peptides+IL-2 (blue line histograms) are shown. Pooled data showing the frequencies of day-6 CD8\(^+\)Tbet\(^+\) (D), CD8\(^+\)Eomes\(^+\) (E), and CD8\(^+\)GrzB\(^+\) (F) during primary CMV infection from LTR relapsers under the culture conditions described. Bars represent median values, and \(p\) values were calculated using the Wilcoxon signed-rank test. (G) Comparison of the (Figure legend continues)
enhanced CD8+ T-bet:Eomes balance and CMV-specific proliferation and effector function.

LTR Relapers have similar frequencies of CMV tetramer+ CD8+ T cells compared with LTR controllers yet demonstrate a reduced T-bet:Eomes ratio and impaired effector function during acute primary CMV infection

Last, we wished to assess whether LTR relapers had detectable CMV-specific tetramer+CD8+ T cells compared with LTR controllers. In our cohort, we had 19 patients who were evaluable using five CMV-specific class I tetramers. As shown in Fig. 9A–D, tetramer+ cells expressed T-bet > Eomes from controllers, whereas tetramer+ cells from relapers expressed Eomes > T-bet and thus overall significantly different T-bet:Eomes ratios (Fig. 9D). Somewhat unexpectedly, PD-1 expression in tetramer+ cells was increased in controllers compared with relapers, whereas no differences were detected in CD160 expression (Fig. 9A–C). However, we did not detect double-positive PD-1 and CD160 expression in tetramer+ cells (data not shown) as has been reported in chronic HIV infection (18). To evaluate function, we performed in vitro restimulation using the corresponding tetramer-specific CMV peptides and measured IFN-γ, TNF-α, and CD107. With this approach, we detected significant increased frequencies of CMV single peptide–specific IFN-γ+ and CD107a+ cells from controllers over relapers and borderline significance for TNF-α+ responses (Fig. 9A, 9B, 9E).

FIGURE 8. Ag and exogenous IL-2 treatment rescues impaired pp65-specific CD8+IFNγ+ and CD8+CD107+ responses. (A) Representative flow cytometric plots of CD3+CD8+IFNγ+ frequencies in relaper patient following secondary restimulation, under the primary culture conditions shown. At day-6, primary cultures were harvested and rested overnight, and secondary restimulation (6 h) was performed in the presence or absence of pp65 peptides (according to whether present in primary cultures) immediately followed by ICS. (B) Pooled data showing the frequencies of CD8+ IFN-γ+ frequencies following secondary restimulation as above, according to primary culture conditions. Bars represent median values, and p values were calculated using the Wilcoxon signed-rank test. (C) Representative flow cytometric plots of CD3+CD8+CD107+ frequencies under the same conditions as described in (A). (D) Pooled data showing the frequencies of CD8+CD107+ frequencies following secondary restimulation as above, according to primary culture conditions. Bars represent median values, and p values were calculated using the Wilcoxon signed-rank test. *p < 0.05, **p < 0.005, ***p < 0.0005.
Discussion

In this study, we show high-risk D+R− LTRs are a heterogeneous group in their acquisition of peripheral CD8+ T cell effector responses during acute primary CMV infection, and that notably, distinct CD8+ immune parameters differentiate patients who subsequently establish durable viral immune control compared with those who develop relapsing viremia during early chronic infection. Our results demonstrate that although the T-box factors T-bet and Eomes are both significantly induced and partially coexpressed during acute primary CMV infection in CD8+ T cells, the relative balance or the CD8+ T-bet:Eomes ratio, along with the pattern of T-box expression in the CD8+ T cell pool, differentiates high-risk LTR controllers versus relapers. Moreover, we provide similar evidence in CMV CD8+ tetramer+ cells, underscoring the importance of the T-bet:Eomes ratio. Our findings are consistent with two recent studies demonstrating induction of T-bet and Eomes in CD8+ T cells during primary CMV infection in renal transplant patients and differential T-box expression patterns in the CD8+ T cells of CMV-seropositive individuals (13, 19). However, our study provides new evidence that early T-bet and Eomes CD8+ expression patterns differ in high-risk patients with respect to their capacity to establish durable CMV control. These findings are also consistent with a recent study by Hersperger et al. (20) showing higher levels of T-bet expression in HIV-specific memory CD8+ T cells from elite controllers compared with chronically infected progressors. However, because our study measured acute CD8+ effector responses versus memory responses, this might account for some differences. For example, we detected distinct T-betEomes and T-betEomes CD8+ T cell populations in the minority of patients, raising the question of whether this phenotype is more common in memory populations. Indeed, we previously demonstrated acute blood CMV-specific CD8+ effector responses transition from a CD45low to a predominantly CD45high phenotype from acute into early chronic CMV infection with resolution of viremia, indicating other phenotypic changes can occur (21, 22). Taken together, our data show the T-bet:Eomes ratio and T-box transcription factor expression patterns in the acute CD8+ T cell pool and CMV CD8+ tetramer+ cells differentiates the capacity for viral control during early chronic infection.

Previous murine studies have demonstrated the importance of the T-box transcription factors T-bet and Eomes in regulating functional CD8+ T cell responses important for control of chronic viral infection (23–26). In addition to the relative balance of T-bet:Eomes, we found these T-box factors are related to CD8+ function during acute infection, with T-bet being positively correlated with GrzB loading and CMV-specific IFN-γ, CD107a, and proliferative responses, whereas Eomes has a reciprocal relationship to these parameters. Our results with respect to Eomes and function were somewhat unexpected because Eomes expression has been shown to be important for memory renewal in mice (26). However, our data indicate higher levels of Eomes during acute primary viral infection are associated with impaired effector function. Although the mechanism(s) for this remain to be elucidated, Eomes−CD8+ T cells have recently been shown to express higher levels of PD-1 (26). Interestingly, we did not observe increased PD-1 expression in conjunction with Eomes during acute primary infection, though this may reflect increased PD-1 expression due to activation during viremia. Therefore, other factors, including other coinhibitory molecules or mechanisms (27, 28) might be important negative regulation of CMV-specific proliferation and effector function in relaper patients. Indeed, our CMV tetramer studies further demonstrate that impaired CMV-specific effector responses are not for lack of CMV cells, rather, cells with an impaired function and altered T-bet:Eomes balance compared with cells from controllers with functional responses. Our data also indicates at least part of the impaired CD8+ function observed in relapers is due to significantly reduced proliferative capacity, resulting in poor differentiation and reduced acquisition of effector function. Surprisingly, these impaired CMV-specific proliferative responses could be restored, most efficiently in the presence of Ag and exogenous IL-2, and were accompanied by increased T-bet:Eomes ratio and enhanced effector function. Collectively, our data indicate that the acquisition of GrzB loading, CMV-specific IFN-γ secretion, CD107a mobilization, and proliferation in CD8+ T cells is coupled to T-bet induction and reciprocally related to Eomes induction during acute primary CMV infection. Indeed, these findings are reminiscent of an earlier study showing a coupling of perforin and HIV-specific proliferative capacity in elite nonprogressors compared with progressors during chronic infection (29). Furthermore, our data suggest that early clinical monitoring of T-box transcription factor expression patterns and CMV-specific CD8+ T cell effector and proliferative responses can differentiate high-risk LTR clinical phenotypes and may be a useful tool to predict those at highest risk for relapsing CMV viremia.

It is also noteworthy that the heterogeneity in the capacity for pp65-specific CD8+ T cell in vitro proliferation we observed in our high-risk patients was unrelated to the absolute viral load. There are other examples of viral infections in humans in which in vitro T cell proliferative responses are impaired or absent during viremia including HIV (30), measles virus (31), hepatitis B virus (32), dengue virus (33), as well as CMV infection (34). Moreover, CMV is known to downregulate MHC class I expression (35) in addition to other mechanisms of immune evasion (36, 37) that might contribute to impaired T cell proliferation. Notably, we observed concomitantly reduced frequencies of pp65-specific CD4+IL-2+ T cells in relapers with impaired in vitro prolif-
iterative responses consistent with a previous report by Tilton et al. (38) that demonstrated reduced IL-2 production in patients during HIV viremia. Importantly, we show that exogenous IL-2 restored pp65-specific proliferative responses in relapsers, confirming that IL-2 responsiveness in CD8+ T cells remains intact in these patients, despite poor CMV-specific responses. This finding also raises the possibility that LTR relapsers are more significantly impacted by calcineurin inhibitor therapy, which directly targets IL-2 mRNA synthesis, compared with LTR controllers despite similar trough levels. To this end, we found SEB-reactive CD8+ T cell responses were also reduced in LTR relapsers, supporting the concept of more prominent global immunosuppression in these patients, despite a lack of differences in their immunosuppressive drug regimens. Taken together, although we observe concomitantly impaired CMV-specific proliferation and IL-2 production in LTR relapsers, other factors such as viremia, CMV immune evasion, or unknown factors may also play important roles in regulating the capacity to expand effector cells during acute infection.

Recently, several groups have advanced efforts to provide third-party, HLA-matched, viral-specific memory cells as adoptive cellular immunotherapy for viral infections such as CMV and other viruses in susceptible solid and hematopoietic transplant recipients (17, 39–43). In our studies we found, unexpectedly, that impaired in vitro CMV-specific proliferative and effector responses could be rescued with pp65 Ag and exogenous IL-2 over 6 d, thus raising the potential for further exploration of ex vivo expansion of autologous CMV-specific T cells with enhanced effector function for adoptive immunotherapy therapy. Although this therapy might carry an increased risk of transferring alloreactive viral-specific T cells, the potential benefit of adoptive cell therapy could offset this risk, particularly in patients who develop drug-resistant CMV, which is more common in the D+R− population (44, 45). This autologous adoptive therapy approach for example could provide pp65-specific CD8+ T cells with multiple host HLA-restrictions and could likely be expanded to other major Ags such as IE-1. Moreover, autologous viral-specific cells may be more durable than third-party donor cells. Nonetheless, a careful risk/benefit analysis would need to be performed when considering such adoptive therapy strategies in LTRs and perhaps be best initially explored in high-risk patients failing conventional antiviral therapy.

There are several caveats to our studies. We acknowledge that there are potential confounding factors that may impact the capacity for immune control during early chronic CMV infection. However, we did not find significant differences between relapsers and controllers in our cohort in regard to immunosuppression, duration of primary infection, or other posttransplant clinical parameters. Interestingly however, relapsers in our cohort were found to be relatively lymphopenic, in addition to impaired functional responses, thus potentially indicating an overall higher level of immunosuppression not captured in drug levels or dosing. Also, while our studies focused on T-cell responses to pp65, we acknowledge the total effector response to CMV may be considerably larger, including a significant contribution by CD4+ T cells.

FIGURE 9. LTR relapsers have similar frequencies of CMV tetramer+ CD8+ T cells compared with LTR controllers, yet demonstrate a reduced T-bet:Eomes ratio and impaired effector function during acute primary CMV infection. (A) Representative flow cytometric plots of A*02 CMV CD8+tetramer+ phenotypic analysis for T-bet, Eomes, PD1, and CD160 (middle panel) percentages and frequencies of tetramer-matched CMV peptide-specific restimulation responses for IFN-γ, TNF-α, and CD107a (bottom panel) in representative relaper and (B) controller LTR. (C) Pooled data showing the percent tetramer+ cells expressing T-bet, Eomes, PD1, and CD160 and (D) the T-bet:Eomes ratio for tetramer+ cells in relapers (n = 8; red) versus controllers (n = 11; blue). (E) Pooled data showing frequencies of tetramer-matched CMV peptide-specific responses for IFN-γ, TNF-α, and CD107a in relapers (n = 8; red) versus controllers (n = 11; blue). Bars represent median values, and p values were calculated using the Mann–Whitney–Wilcoxon t test. *p < 0.05, **p < 0.005, ****p < 0.0001.
(46, 47). Indeed, a broader CD8+ response is supported by our findings of striking induction of T-bet, Eomes, and GrzB during primary infection compared with pre-CMV levels. However, because our previous studies found pp65-specific IE1-specific CD8+ effectors responses during acute primary infection (21), we focused on pp65 responses. Finally, we recognize that our cohort size is somewhat small; however, the findings in this study could provide the foundation for a larger prospective study to test the clinical use of these CMV immune parameters to assist in antiviral decision making in high-risk LTRs. Nonetheless, despite these potential limitations, our study provides important evidence on the role of T cell immunity and the capacity of high-risk D+R- LTRs to establish durable viral control following primary CMV infection.

In summary, we report that high-risk D+R− LTRs represent a heterogeneous group of patients with respect to their acquisition of CD8+ T cell T-bet:Eomes balance, GrzB loading, CMV-specific proliferative capacity, IFN-γ/CD107a secretion, and IL-2/IFN-γ production by CD4+ T cells. We demonstrate that these immune parameters during acute primary CMV infection differentiate LTR clinical phenotypes with respect to the capacity for establishing durable immune control during early chronic infection, following antiviral therapy for primary infection. Furthermore, we show that impaired CMV cellular immunity can be restored in vitro with Ag and exogenous IL-2, raising the potential for autologous adoptive cell therapy as a therapeutic strategy in high-risk patients failing therapy. Taken together, our findings provide plausible immune correlates to support the pursuit of future studies aimed at determining whether immune monitoring is useful to prospectively risk-stratify high-risk LTRs and assist in antiviral decision making, and ultimately, as a tool to advance personalized antiviral therapies directed toward optimal CMV control.

Disclosures

The authors have no financial conflicts of interest.

References

8. Lamivudine treatment can restore T cell responsiveness in chronic hepatitis B. Blood 1130–1144.

