Ligation of Surface Ig by Gut-Derived Antigen Positively Selects Chicken Bursal and Peripheral B Cells

Dariush Davani, Zeev Pancer and Michael J. H. Ratcliffe

J Immunol 2014; 192:3218-3227; Prepublished online 24 February 2014;
doi: 10.4049/jimmunol.1302395
http://www.jimmunol.org/content/192/7/3218

References

This article cites 42 articles, 16 of which you can access for free at:
http://www.jimmunol.org/content/192/7/3218.full#ref-list-1

Why *The JI*? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Ligation of Surface Ig by Gut-Derived Antigen Positively Selects Chicken Bursal and Peripheral B Cells

Dariush Davani,* Zeev Pancer, † and Michael J. H. Ratcliffe*

In many mammals and birds, B cell lymphopoiesis takes place in GALT, such as the avian bursa of Fabricius. Although BCR expression is sufficient for bursal colonization, the role of BCR ligation in the later stages of bursal B cell lymphopoiesis remains elusive. To address this directly, we introduced a surface Ig–related construct with defined Ag specificity containing the Ag-binding portion of a lamprey variable lymphocyte receptor specific for PE fused to a truncated chicken μ-chain (VLRPETμ) into developing chick embryos. VLRPETμ expression supports bursal follicle colonization, clonal expansion, and Ig V gene diversification. VLRPETμ-expressing B cells migrate to the periphery in the absence of the Ag starting from day 18 of embryogenesis. VLRPETμ-expressing B cells declined rapidly in the bursa and periphery in the absence of Ag after hatch; however, intrabursal injection of PE prolonged survival of VLRPETμ+ bursal and peripheral B cells. Intrabursal introduction of Ag increased emigration of short-lived LT2+ B cells. Peripheral VLRPETμ+ B cells were maintained following intrabursal PE application and contained both short-lived LT2+ and long-lived LT2− B cells. In the chicken bursa, the later stages of B cell development occur in the presence of gut-derived Ag; therefore, we conclude that Ag-mediated ligation of BCR in bursal B cells acts to positively select bursal B cells into both short-lived and long-lived peripheral B cell populations. The Journal of Immunology, 2014, 192: 3218–3227.
B cells are maintained for extended periods of time in the periphery. B cells disappear rapidly after hatch. However, following intra-

Materials and Methods

Generation of replication competent avian leukaosis virus with splice acceptor (Bryan polymerase) subgroup B–VLRPETmBchimeric BCR

To generate a BCR with defined specificity, the diversity sequence of VLRBP (23) was fused to the chicken T\textsubscript{m} sequence. The VLR diversity sequence was PCR amplified using Platinum Pfx polymerase (Invitrogen, San Diego, CA) with the primer combination VLR\textsubscript{3} : 5’-ATTATTTGG-CCACGGCATGTCCCTCGCAGT-3’ and VLR\textsubscript{3} : 5’-ATTATTGCGGCCG-GGCATTTCGAGGGGCTAGTG-3’ from the VLR-containing vector and cloned into Zero Blunt (Invitrogen). The cloned VLR was digested from this shuttle vector using EcoI and EagI restriction sites embedded in the primers, and the VLR sequence ~600 bp was gel purified and cloned into the EagI site of replication competent avian leukosis virus with splice acceptor (Bryan polymerase) subgroup B [RCAS(BP)B]–T\textsubscript{m}. The VLR diversity sequence. The VLR diversity region of the lamprey VLR was fused to the single copy of chicken RAG2 sequence from genomic DNA as an internal standard. PCR products were electrophoresed, and bands were quantitated by scanning densitometry (Bio-Rad).

Gene-conversion events were assessed by restriction site analysis, as described, using the KpnI restriction enzyme (New England BioLabs) (27). V\textsubscript{h} rearrangements were amplified using the primer combinations described previously (14, 15). All amplification reactions also contained the RAG5′ and RAG3′ combination of primers to amplify the single copy of chicken RAG2 sequence from genomic DNA as an

Results

Generation of RCAS(BP)B–VLRPETm–transduced chicken B cells

To generate slg-related BCRs of defined specificity, we made use of Ag-specific lamprey VLRBP isolated from a yeast surface display library (23). The diversity region of the lamprey VLR was fused to the chicken T\textsubscript{m} gene, using the chicken V\textsubscript{h} leader sequence. The resulting constructs were cloned into the RCAS(BP)B productive retroviral vector (Fig. 1A) and transfected into CEFs.

As we observed in other studies, surface expression of chicken T\textsubscript{m} does not require coexpression of Ig\textsubscript{a} and Ig\textsubscript{b} on CEFs and, under these circumstances, does not signal when cross-linked (25); RCAS(BP)B–T\textsubscript{m}–transfected CEFs expressed high levels of surface T\textsubscript{m}, CEFs transfected with RCAS(BP)B–VLRPETm–T\textsubscript{m} also expressed this construct at similar levels on the CEF surface (Fig. 1B). Staining with PE demonstrated that the RCAS(BP)B–VLRPETm–T\textsubscript{m} construct maintained the specificity of the original selected VLR (Fig. 1B).

VLRPETm–T\textsubscript{m} was expressed in the chicken B cell lymphoma DT40 by coculture of transfected CEFs with DT40 cells (Fig. 1B). VLRPETm-expressing DT40 cells were purified to homogeneity by flow cytometric cell sorting and assessed for their ability to mobilize calcium in response to VLRPETm ligation with soluble PE. As shown in Fig. 1C, cross-linking VLRPETm on VLRPETm-expressing DT40 cells resulted in levels of calcium mobilization equivalent to those seen following receptor cross-linking with anti-IgM Abs (Fig. 1C). Thus, when expressed on the B cell surface, VLR–T\textsubscript{m} cross-linking events caused mobilization of intracellular calcium consistent with association of Ig\textsubscript{m}/Ig\textsubscript{b} (15). Consequently, although T\textsubscript{m} and VLR–T\textsubscript{m} can be expressed on the cell surface in the absence of Ig\textsubscript{m}/Ig\textsubscript{b}, T\textsubscript{m} and VLR–T\textsubscript{m} will associate with the Ig\textsubscript{m}/Ig\textsubscript{b} complex if available.

Expression of VLRPETm–T\textsubscript{m} in the absence of ligation is sufficient to support the early stages of B cell development

Day-3 chicken embryos were inoculated with RCAS(BP)B–VLRPE–transduced CEFs and analyzed neonatally for the presence of
peripheral and bursal B cells expressing VLRPETμ. VLRPETμ-expressing B cells lacking endogenous IgM were detected in the bursa, as well as peripherally in the spleen and PBLs, of 30 chicks analyzed in three independent experiments (Fig. 2A). Cell cycle analysis showed that both sorted ex vivo bursal VLRPETμ-expressing B cells, as well as endogenous sIg-expressing (IgL+/VLRRPETμ) B cells, were proliferating at a high rate, which is characteristic of neonatal bursal B cells (Fig. 2B). Thus, surface expression of a BCR, either sIg or VLRPETμ, is sufficient and required for the early stages of bursal cell development.

In addition, VLRPETμ-expressing B cells showed a reduction in endogenous L chain V to J rearrangement compared with B cells expressing endogenous sIgM (data not shown). Semiquantitative PCR of genomic DNA demonstrated that, in the absence of receptor ligation, expression of the VLRPETμ is sufficient to partially inhibit rearrangement of endogenous L chain genes in developing B cells. The levels of inhibition observed were similar to those seen in developing B cells expressing either the Tm receptor or the CD8α:Igα receptor (14, 15).

To assess gene conversion at the Ig L chain locus, we performed restriction digests and sequence analysis of VJL sequences from sorted VLRPETμ-expressing B cells from the bursa and spleen of RCAS-VLRPETμ-transduced chicks. The germline VL1 sequence contains a KpnI restriction site that is partially lost upon gene conversion during the diversification of the rearranged L chain allele (15, 27). Therefore, VJL sequences amplified from sorted VLRPETμ-expressing B cells (Fig 2C). To ensure that digests were performed to completion, the pUC18 plasmid containing a KpnI site was included in all reactions, as indicated. VJL sequences from bursal VLRPETμ-expressing B cells were largely resistant to digestion with KpnI as were VJL sequences from bursal cells expressing endogenous sIg. Therefore, expression of VLRPETμ supports the induction of gene conversion as efficiently as does Tm or CD8α:Igα (14, 15). At days 18–19, most splenic B cells are prebursal, and the bursal microenvironment is required for the onset of gene conversion. Consistent with this, VJL sequences derived from splenic VLRPETμ-expressing B cells were heavily digested with KpnI. This suggests that splenic VLRPETμ-expressing B cells have undergone less gene conversion than age-matched bursal B cells. This observation was confirmed by sequencing cloned VJL genes from the relevant B cell populations (data not shown).

Intrabursal exposure to Ag increases B cell migration to the periphery

B cell migration from bursa to the periphery starts at about day 18 of embryonic life in chickens and continues posthatch until sexual maturity. Within the bursa after hatch, B cells redistribute and generate cortical and medullary populations separated by a cortico-medullary junction that develops from the basement membrane. This redistribution coincides with transportation of the contents of the gut to the bursal medulla by FAE. Whether transport of Ag has any direct impact on the redistribution and migration of B cells to the periphery remains unclear.
The contents of the cloaca are transported to the bursal duct by reverse peristalsis. Therefore, we applied Ag into the cloaca to mimic the physiological route of gut exposure to Ag. To visualize and confirm the effective transport of the injected material to the bursa lumen, the PE Ag was mixed with india ink. After 10 min, carbon particles were not detected in the cells of the FAE. However, 1 h after application, carbon particles were detected in the follicular-associated epithelial cells that map to the organization of B cell follicles (Fig. 3).

To assess the consequences of BCR ligation on the fate of chicken bursal B cells, we introduced PE intrabursally into chicks that had been transduced with RCAS(BP)B-VLRPET^m. The penetrance of the transduced VLR^{PET}_m was assessed on PBLs from day-1 neonates. Chicks with similar VLR^{PET}_m-expressing B cell populations were divided into two groups, and 100 µl of PE/india ink solution was applied daily onto the anal lips of VLR^{PET}_m-transduced neonates for 2 d. Two days after PE application, the frequency of peripheral blood VLR^{PET}_m-expressing B cells was assessed. Although there was a slight trend toward increased levels of VLR^{PET}_m-expressing B cells following PE exposure, the increase was not significant (Fig. 3B). At a minimum, this result clearly indicates that intrabursal application of Ag does not mediate negative selection among peripheral B cells.

It was shown that >90% of bursal emigrants to the periphery of a 3-wk-old chickens are short-lived B cells, with a life span of 1–2 d, which can be identified by the expression of a marker defined by the LT2 Ab (28). Subsequent to hatch, LT2 expression is largely maintained among bursal B cells, although a clear population of LT2^{lo}/^{lo} cells emerges. Among peripheral B cells, the frequency of LT2⁺ emigrants increases with time, such that by 1 mo of age there are clearly defined populations of peripheral LT2⁺ and LT2⁺ cells. At this stage, although the LT2⁺ peripheral cells have been shown to be short-lived bursal emigrants, the great majority of LT2⁻ peripheral cells are long-lived bursal emigrants.

Although intrabursal application of PE Ag did not substantially affect the overall frequency of peripheral VLR^{PET}_m-expressing PBL B cells, we used the LT2 Ag to specifically assess whether the intrabursal application of Ag affected the rate of emigration of short-lived B cells from the bursa (Fig. 4A). In chicks exposed to intrabursal PE, we observed a higher frequency of LT2⁺ VLR^{PET}_m-expressing B cells in the PBLs compared with control chicks. In contrast, in the same chicks, there was no difference in the frequency of LT2⁺ B cells expressing endogenous sIg in the PBLs of the Ag-treated versus control chicks (Fig. 4A, 4B). Thus, increased levels of VLR^{PET}_m⁺ LT2⁺ peripheral B cells were specific for the Ag treatment. This is suggestive of Ag-driven emigration of B cells from the bursa.

In the presence of intrabursally administered PE, the frequency of LT2⁺ PBL B cells was approximately equivalent when com-
In the absence of intrabursal PE, the proportion of LT2+ VLRPET was significantly lower than the proportion of LT2+ sIg+ B cells exposed to intrabursal PE, there was a clear indication that VLR PE bursal B cells expressing VLR PET of VLR PET period of time (Fig. 5A). Therefore, at least some peripheral VLR PET+ B cells are recent emigrants from the bursa or whether they are longer-lived cells whose presence is maintained in some way by exposure to Ag in the bursa.

Among the peripheral B cells in the absence of intrabursal Ag, few, if any, VLRPE-μ-transduced cells were observed at day 21 (Fig. 6A). Peripheral B cells at this stage include both LT2+ and LT2− populations, with the LT2+ population disappearing following bursectomy (Fig. 6A). In contrast, following Ag application in the bursa, VLRPE-μ-transducing B cells were maintained in the PBLs for extended periods of time (Fig. 6B, top row). These VLRPE-μ-transducing B cells also contained both LT2+ and LT2− cells, with the LT2+ VLRPE-μ-transducing population disappearing rapidly within 7 d postbursectomy (Fig. 6A, middle row). Therefore, at least some peripheral VLRPE-μ+ B cells are recent bursal emigrants whose emigration from the bursa is dependent upon the maintenance of VLRPE-μ+ bursal B cells, which, in turn, is driven by the presence of intrabursal Ag.

Not all VLRPE-μ+ peripheral B cells expressed LT2 (Fig. 6), and some VLRPE-μ PBL B cells in intrabursal PE-treated VLRPE-μ-transduced chickens clearly fall into the long-lived emigrant population, being maintained for ≥21 d following bursectomy (Fig. 6B, bottom row). This was confirmed by assessing the frequency of VLRPE-μ+ splenic B cells 28 d after surgical bursectomy in VLRPE-μ-transduced chickens that had been treated with PE intrabursally (Fig. 7). Despite the complete disappearance of splenic LT2+ B cells, a significant population of PE-binding B cells was maintained. Thus, some VLRPE-μ+ peripheral B cells are long-lived LT2− emigrant B cells. Therefore, we conclude that the presence of specific Ag in the bursa has the capacity to ligate Ag-specific receptors on VLRPE-μ-expressing B cells, resulting in

FIGURE 3. Intrabursal Ag treatment does not induce negative selection of peripheral B cells. (A) PE/india ink mixture was introduced into the bursal lumen. Uptake of the colloidal India ink by FAE was visualized as black staining on the follicular epithelium 10 min (Ai) or 1 h (Aii, Aiii, and Aiv) after application. (B) Chick embryos were inoculated with VLRPE-μ- or PE-transduced CEFs, and PE/india ink was introduced into the bursal lumen of day-1–2 VLRPE-μ-transduced chicks. PBLs of day-3–5 chicks were assessed by flow cytometry for the frequency of VLRPE-μ- or PE-transducing ChiB6+ B cells. Horizontal bars represent the mean of each group.
maintained viability within the bursa and sustained emigration to the periphery (Fig. 8).

Discussion

Although B cell development in some mammalian species, such as human and mouse, occurs in an environment free of exogenous Ag, B cell development in other species occurs in GALT. This provokes the question as to whether the presence of Ag might impact B cell lymphopoiesis in the “so-called” GALT species (22).

The current study addressed the consequences of gut-derived Ag exposure on bursal B cell fate using the RCAS retroviral vector (29) to introduce Ag-specific chimeric BCR into developing chicken embryos. Because retroviral transduction is not 100%, this system allows for direct comparisons to be made between cells expressing the transduced BCR and cells expressing endogenous sIg (15, 24). We demonstrated previously that BCR expression in the absence of ligation is sufficient to support B cell transition through the Ig-selection checkpoint, leading to productive bursal colonization (14–16, 24, 30–32). Similarly, we show in this study that the VLR\textsubscript{PET}m receptor supported all early stages of B cell development in the bursa, characteristic of B cells passing the Ig-selection checkpoint. Thus, in the absence of Ag, VLR\textsubscript{PET}m+ B cells colonize bursal follicles, undergo rapid proliferation, and undergo Ig diversification by gene conversion.

However, BCR expression in the absence of ligation is not sufficient to support the long-term maintenance of bursal B cells (20). In fact, in the absence of PE, VLR\textsubscript{PET}T\textsubscript{m}+ B cells disappear from the bursa within the first 10 d after hatch (Fig. 5). Disappearance of B cells expressing the T\textsubscript{m} chimeric receptor was shown to be independent of competition with B cells expressing endogenous BCR (20). Moreover, in the chicken, all Ig gene rearrangement occurs during embryonic life, and the entire B cell repertoire is derived from cells expressing sIg by embryonic day 17 (11, 33). Therefore, the disappearance of cells expressing VLR\textsubscript{PET}T\textsubscript{m} cannot simply be due to their replacement by newly developing B cells undergoing Ig gene rearrangement.

Ab-mediated cross-linking of chimeric CD8\alpha:1g\alpha BCR receptors in the bursa prolonged the survival of CD8\alpha:1g\alpha-expressing B cells (21), although the physiological relevance of Ab-mediated cross-linking of BCR can be questioned. However, the VLR\textsubscript{PET}T\textsubscript{m} construct allowed us to assess the role of Ag and specific BCR ligation in chicken B cell development. Typically, BCR cross-linking on immature B cells has been considered to induce tolerance (34, 35). Indeed, we provided evidence that exposure of developing B cells in the chick embryo to a BCR ligand
introduced i.v. induced a BCR-signaling–dependent deletion of B cells (36). Conversely, we show in this study that intrabursally administered Ag maintains bursal B cells. Thus, we conclude that the route of the Ag administration changes the outcome of BCR ligation. This could be due to the context in which the Ag is presented to the target B cell. The bursa contains sIgG-expressing follicular dendritic cell (FDC)-like cells. The sIgG expressed on these cells is not autonomously produced but is acquired in the form of immune complexes (37) as a consequence of FcR expression. Ag applied via the bursal lumen is taken up by the FAE and transported into the medulla of bursal follicles where it be-

Developing B cells that encounter Ag presented by FDCs may additionally be exposed to costimulatory receptors expressed by the FDCs themselves. In contrast, developing prebursal B cells encountering i.v.-injected PE may receive signals through BCR in the absence of costimulatory signals provided by appropriate Ag presentation. Thus, gut-derived Ag, such as the PE adminis-

tered in the current experiments, could induce positive selection of PE-specific B cells, whereas i.v.-injected Ag results in B cell deletion. It would be intriguing to examine the effect of specific Ag on chicken B cell development in embryos derived from IgG-deficient hens (37), in which intrabursally applied Ag would not be presented in the context of immune complexes.

Normal slg⁺ bursal B cells are maintained in the bursa until the involution of the organ at ~6 mo of age. Bursal duct ligation (19, 38) and ectopic grafting of the bursa to sites in which there is no direct contact with the gut (18) result in the failure of continued bursal B cell development after hatch, suggesting that the signals supporting slg⁺ bursal cells are gut derived. We show in this study that maintenance of bursal B cells is a consequence of BCR li-
gitation, suggesting that such maintenance signals are not simply gut-derived mitogens acting through non-sIgRs.

The nature of the ligand for the BCR of normal slg⁺ bursal cells remains unclear. Gut-derived bacterial superantigen positively selected rabbit B cells of a defined BCR allotype, independent of receptor specificity (7, 39). Nonetheless, this superantigen clearly signals through slg. In our experiments, it is highly un-

likely that a gut-derived superantigen would bind the VLR of the VLR^{PE}⁺μ construct given that the lamprey VLR is not a member of the Ig supergene family. However, although we showed that Ag-mediated BCR ligation leads to the support of bursal B cells, we cannot distinguish between the presence of a B cell superantigen activating B cells through BCR, independent of their specificity, or the presence of a multiplicity of gut-derived Ags, each acting on Ag-specific B cells; indeed, these models are not mutually ex-

clusive.

After hatch, some bursal cells migrate back across the basement membrane to form the follicular cortex, whereas Ag taken up through the FAE is retained in the follicular medulla (17, 32). Bursal cells expressing either μ or the chimeric CD8α:lgα BCR fail to migrate into the cortex (25), although there is some evidence that CD8α:lgα⁺ bursal cells migrate into the cortex when exposed to anti-CD8α Abs intrabursally (21). It is tempting to suggest that, following intrabursal exposure to PE, VLR^{PE}⁺^{μ⁺} bursal cells are maintained and colonize the follicular cortex, although evidence supporting the latter is lacking. Migration of VLR^{PE}⁺^{μ⁺} bursal cells to the follicular cortex would place these cells into a physiologically distinct compartment within the bursa from which gut-derived Ags are excluded (32). Thus, al-

though Ag-induced proliferation may be initiated in the follicular medulla, the transit of these cells into the Ag-free cortical envi-

ronment may limit the proliferative burst.

The bursal follicular cortex has been identified as a site of Ig repertoire diversification by gene conversion, based on the high levels of activation-induced cytidine deaminase (AID) seen in cortical bursal cells (40). In the case of cells expressing VLR^{PE}^{μ⁺}, diversification of the VLR^{PE}^{μ⁺} receptor by gene conversion could not occur because specificity is determined by the retrovirally transduced construct. However, among nor-

mal bursal cells, the high levels of cortical AID expression suggest that exposure to Ag in the follicular medulla might in-
duce migration into the cortex, followed by continued prolifer-

ation and repertoire diversification by gene conversion. This would generate a situation that, at first sight appears paradoxical but would represent an Ag-driven generation of a naive B cell.
repertoire and preclude the possibility of the naive B cell repertoire becoming restricted to those specificities recognizing gut-derived Ags. This possibility is supported by the observation that SRBCs introduced into the normal neonatal chick bursa through the bursal lumen do not result in a detectable increase in SRBC-binding bursal B cells (41). Indeed, not only does intrabursal Ag fail to result in increased numbers of Ag-binding bursal B cells, it also fails to induce Ag-specific Ab responses (42).

Bursal B cells migrate to the periphery where they form the Ag-responsive mature B cell population. This migration is initiated during the later stages of embryonic life, and we show in this study that this can occur in the embryo independent of BCR ligation, because VLRPETm-expressing B cells migrate to the periphery in the absence of intrabursal PE. Nonetheless, intrabursal BCR ligation clearly enhances the emigration of bursal cells to the periphery.

We showed previously that bursal emigrants fall into two phenotypically and functionally distinct populations. Those B cells expressing the LT2 marker are short-lived bursal emigrants and are distinct from a longer-lived population of LT2− bursal emigrants (28, 43). In the presence of PE, the proportion of LT2+ VLRPETm+ cells that is found in the periphery is directly proportional to the frequency of LT2+ sIg+ cells in the periphery (Fig. 4C). In contrast, in the absence of PE, the proportion of LT2+ VLRPETm+ cells in the periphery is substantially lower than the proportion of LT2− sIg− peripheral B cells. Therefore, we can conclude that the signals required to support the emigration of short-lived LT2− sIg− cells from the bursa are functionally equiva-
emigration from the bursa. Support of the later stages of chicken B cell development, including cells. Again, this is fully consistent with a role for BCR ligation in Ag-binding graphs are gated on ChB6+ B cells, and LT2 graphs are gated forward scatter, side scatter, and live cells and represent 50,000 events. PE on ChB6+, ChB6+ PE+, or ChB6+ PE cells, as indicated.

Intrabursal exposure to PE induces higher levels of LT2 VLRPETγδTcRαγδ+ bursal cells. Our finding that intrabursal PE induces higher levels of LT2 VLRPETγδ+ peripheral B cells in the presence of specific Ag. Spleens of bursectomized chicks, inoculated with VLRPETγδ+transduced CEFs, were assessed 28 d postbursectomy for frequency of LT2 VLRPETγδ+ longer-lived B cells. Graphs are gated on forward scatter, side scatter, and live cells and represent 50,000 events. PE Ag-binding graphs are gated on ChB6+ B cells, and LT2 graphs are gated on ChB6+, ChB6+ PE+, or ChB6+ PE− B cells, as indicated.

Infrabursal PE induces higher levels of LT2 VLRPETγδ+ peripheral B cells in the presence of specific Ag. Spleens of bursectomized chicks, inoculated with VLRPETγδ+transduced CEFs, were assessed 28 d postbursectomy for frequency of LT2 VLRPETγδ+ longer-lived B cells. Graphs are gated on forward scatter, side scatter, and live cells and represent 50,000 events. PE Ag-binding graphs are gated on ChB6+ B cells, and LT2 graphs are gated on ChB6+, ChB6+ PE+, or ChB6+ PE− B cells, as indicated.

In summary, the peripheral B cell compartment would contain a diverse population of naïve B cells and an additional longer-lived population of LT2 cells enriched for specificities present in the environment. Under these circumstances, BCR ligation in the medulla of bursal follicles could lead to both the generation of the diversified pool of naïve B cells following redistribution to follicular cortex and subsequent emigration, as well as the generation of a longer-lived Ag-enriched peripheral population following emigration directly from the follicular medulla.

Intrabursal exposure to PE additionally generates a population of LT2 VLRPETγδ+ peripheral B cells that survive for extended periods following surgical bursectomy (Figs. 6, 7). Thus, BCR ligation may induce a transition from short-lived to long-lived B cell. Although short-lived LT2 bursal emigrants are derived predominantly from the follicular cortex, longer-lived LT2 bursal emigrants are likely derived from the follicular medulla (43).

We previously argued that because the follicular medulla is a site of gut-derived Ag, long-lived LT2 bursal emigrants may represent a population of B cells that have experienced Ag exposure. Therefore, the peripheral B cell compartment would contain a diverse population of naïve B cells and an additional longer-lived population of LT2 cells enriched for specificities present in the environment. Under these circumstances, BCR ligation in the medulla of bursal follicles could lead to both the generation of the diversified pool of naïve B cells following redistribution to follicular cortex and subsequent emigration, as well as the generation of a longer-lived Ag-enriched peripheral population following emigration directly from the follicular medulla.
Acknowledgments
We thank Gisele Knowles and Arian Khandani for expert assistance with flow cytometry and cell sorting and Lisa Wells for animal care.

Disclosures
The authors have no financial conflicts of interest.

References