The Peptide-Receptive Transition State of MHC Class I Molecules: Insight from Structure and Molecular Dynamics

J Immunol 2012; 189:1391-1399; Prepublished online 29 June 2012; doi: 10.4049/jimmunol.1200831

http://www.jimmunol.org/content/189/3/1391

Supplementary Material

http://www.jimmunol.org/content/suppl/2012/06/29/jimmunol.1200831.DC1

References

This article cites 86 articles, 27 of which you can access for free at:

http://www.jimmunol.org/content/189/3/1391.full#ref-list-1

Why *The JI*

Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I–restricted CD8+ T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3_{10} helix that flips from an exposed “open” position in the PR transition state to a “closed” position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46–53 of murine H-21. H-2Ld MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.

The Peptide-Receptive Transition State of MHC Class I Molecules: Insight from Structure and Molecular Dynamics

Michael G. Mage,* Michael A. Dolan,† Rui Wang,* Lisa F. Boyd,* Maria Jamela Revillaza,* Howard Robinson,‡ Kannan Natarajan,* Nancy B. Myers,§ Ted H. Hansen,§ and David H. Margulies∗

In the adaptive immune system, CD8+ T lymphocytes, crucial effector cells, are activated by encounter of their TCR with peptide-bearing MHC class I (MHC-I) molecules expressed on the plasma membrane of tumor, target, or infected APCs (1). The loading of tightly binding self and pathogen peptides, crucial to the stability, cell-surface expression, peptide repertoire, and immune function of such MHC-I molecules (2, 3), takes place while the newly synthesized MHC-I molecules in the endoplasmic reticulum (ER) are held by chaperones in a peptide-receptive (PR) transition state. Similarly, MHC class II (MHC-II) molecules, which generally acquire their peptide ligands in an endocytic compartment, are recognized by TCR on CD4+ T cells. Several classes of receptors on NK cells interact with specific MHC-I molecules complexed with peptide, although the influence of particular peptides in NK recognition is less specific (4). MHC-I polymorphisms and their accompanying peptide repertoires are associated with a variety of infections (e.g., HIV, human T-cell leukemia virus, hepatitis C, malaria), autoimmune diseases (e.g., ankylosing spondylitis, asthma, birdshot retinopathy, Behcet’s disease), drug hypersensitivities, and cancers (5). Lesions of the MHC-I pathway peptide transporters (TAP1 and TAP2) and the chaperone tapasin are associated with a group of immunodeficiency diseases called bare lymphocyte syndrome type 1 (6).

The usual formation of the MHC-I/β2-microglobulin (β2m)/peptide complex exploits fundamental mechanisms of protein folding and assembly complemented by dedicated and generic components of the Ag presentation pathway. Thus, MHC-I molecules bind peptides derived from the natural degradative turnover of self proteins, from proteins overexpressed as a result of malignant transformation, from defective products of protein translation, and from peptides derived from infection by intracellular parasites such as viruses in a complex but coordinated series of reactions (7–9). Newly synthesized MHC-I molecules enter the ER where they cotranslationally assemble with the MHC-I L chain β2m (10, 11) and are stabilized in a peptide-loading complex (PLC) that includes the chaperone lectins calnexin and calreticulin (12, 13), as well as tapasin (14–17). A complex of tapasin and ER protein 57, by stabilizing the PR form of MHC-I, permits access to peptides in the ER (15, 18, 19), which bind with a range of affinities (20). These peptides, generated in the cytoplasm by the proteasome, are transported to the ER via the TAP, and can be trimmed by ER-resident proteases (21–25). Peptide editing, which occurs when new MHC-I molecules are bound to tapasin of the PLC in the ER (26), permits exchange of available peptides and assures that MHC-I molecules that leave the ER and proceed to the cell surface have a mature conformation that is stabilized by high-affinity peptides. When editing is hindered by mutations that interfere with proper delivery of peptides to the ER (3, 27), the resulting thermally labile MHC-I molecules reach the cell surface complexed with low-affinity peptides. There, some peptides dissociate from the MHC-I molecules, hindering antiviral immunity (28). Among the general features of peptide-binding MHC molecules that are crucial to peptide interaction and specificity is the presence of accommodating pockets of...
the peptide binding groove (29), designated A through F for MHC-I (30). Pocket A anchors the amine group of the amino terminal residue of the bound peptide, pocket B binds the side chain of peptide residue two, and pocket F accommodates the side chain of the carboxyl terminal residue.

The peptide binding, folding, maturation, and cell surface expression of MHC-I molecules have been examined extensively using a variety of mAbs (27, 31–38), as well as by biochemical and biophysical methods (2, 39). The transition from unfolded to mature MHC-I can be monitored with the mAb 64-3-7 that binds the partly folded PR form of H-2Ld, but not the mature PL conformation that is detected with mAb 30-5-7 (31). Binding studies indicate that mAb 64-3-7 interacts with a segment of the α helix domain of H-2Ld that includes residues 46–52 (40), and reactivity with 64-3-7 is lost when H-2Ld binds peptides, an event concomitant with dissociation from tapasin (41). Two residues, Q48 and P50, found only in H-2Ld and H-2Lα, allow binding to 64-3-7, and when substituted into other MHC-I molecules such as H-2Kd, H-2Kk (40), HLA-B27 (42) confers reactivity with 64-3-7, indicating the general applicability of findings with this Ab.

Understanding the mechanism of peptide loading of MHC-I during its biosynthetic maturation is crucial for an appreciation of the details of a central step leading to T cell recognition and contributes to our broader knowledge of the general rules that govern the interaction of proteins with peptide ligands or peptide cofactors. By clarifying the molecular movements that accompany the binding of MHC-I to peptides, we may also learn about cooperative effects that influence protein folding and assembly. Ideally, structure determination of the multimolecular PLC would provide crucial information addressing the mechanism of peptide loading, but the inherent lability of peptide-free MHC-I in solution (2) and its tendency to aggregate and precipitate have confounded efforts to isolate sufficient quantities of peptide-free complexes for crystallographic analysis. Because the mAb 64-3-7 recognizes a PR conformation of PLC-bound H-2Ld, we reasoned that determining the structure of the segment of this MHC-I molecule in complex with this mAb would provide a snapshot of a part of the molecule in the PLC, and that molecular dynamics simulations would permit visualization of this conformation in the context of the whole MHC-I. To this end, we have determined the structure (to 1.64 Å resolution) of complexes of three H-2Ld α helix domain peptides (that include residues 46–53) with the Fab fragment of mAb 64-3-7. These structures reveal a conserved conformational feature, the 310 helix, which, because it is bound to 64-3-7, may be present and solvent-exposed in a proportion of the ensemble of molecules in the PR form. We have examined the structure of residues 46–53 in molecular docking and molecular dynamics simulations in the context of H-2Ld that reveal conformational changes in the peptide binding groove that accompany the transition of H-2Ld from the PR to PL form. Interestingly, a segment of the α helix domain, pseudosymmetrical to the 64-3-7 binding site, determines tapasin interaction, known to stabilize the PR conformation prior to peptide binding. Based on this observation, we speculate that 64-3-7 and tapasin monitor the PL transition using analogous structures located at opposite ends of the peptide binding groove.

Materials and Methods
mAb preparation, sequence determination, and Fab preparation
mAb 64-3-7 (31) was purified from hybridoma cell culture supernatant by binding to protein A-Sepharose. The N-terminal protein sequences of the H and L chains of the mAb, determined by automated sequencing, were compared with the Kabat–Wu database (43) to design primers for DNA sequencing. cDNA prepared from 64-3-7 hybridoma cells was used to obtain the sequence of the VH, Cα1, VW, and CX domains of the Ab. The sequence has been deposited along with the structural model and structure factors in the Protein Data Bank (http://www.rcsb.org/pdb/home/home.do) (44) under accession nos. 3U01, 3UYR, 3V4U, and 3V52. The Fab fragment of 64-3-7, homogeneous by SDS-gel electrophoresis and size exclusion HPLC, was prepared from the whole molecule by papain digestion followed by repassage through protein-A Sepharose (45, 46).

Surface plasmon resonance binding studies
The sequences of peptides used in these experiments were: pLd35–55, RFDSDAENPYEPRPAWMEQE (α helix domain segment); pKb35–55, RDFDSDAENPYEPRARWMEQE; and a control peptide, SNVRKINNWRSTVQKYL. These peptides were synthesized with an additional amino terminal cysteine residue to permit directed coupling. Various smaller peptides are indicated in the figure legends. All peptides were analyzed by reverse phase HPLC or mass spectrometry and were of >90% purity. For surface plasmon resonance (SPR) experiments, 64-3-7 Fab was flowed past pLd35–55 coupled via its amino terminal cysteine to a CM5 chip (47) in a BIAcore 2000. Three independent experiments using graded concentrations of the Fab were performed. Kinetics data were analyzed with BIAeval 3.2. Competition experiments were performed with a BIAcore T100. Control flow cells were either mock coupled, coupled to pKb35–55, or coupled to the control peptide. Details of the coupling have been described previously (46). Other details are in the relevant figure legends.

Crystalization, x-ray data collection, structure solution, and refinement
Crystals of the 64-3-7 Fab complexed with peptide were obtained in 0.1 M LiSO4, 0.1 M Tris (pH 8.5), 30% (w/v) polyethylene glycol 3000, following incubation at 4°C. Diffraction data were collected at National Synchrotron Light Source beamline X29A with an Area Detector Systems CCD detector at wavelength 1.07500 Å for crystals designated M8, M3, M4, and M1, which were produced with the 64-3-7 Fab and peptides representing H-2Ld residues 45–54, 46–53, 46–53, and pLd35–55 (with the added Cys residue alkylated), respectively. For each Fab/peptide complex crystal, data were collected, then scaled with HKL2000 (48). An initial solution for dataset M1 was obtained by molecular replacement with Phaser (49), as implemented in the CCP4 suite (50). The H chain of the blue fluorescent Ab EP2-19G2 (Protein Data Bank code 3CFC; Ref. 51) and the L chain of Fab M75 (Protein Data Bank code 2HKF; Ref. 52) were used as models for molecular replacement. The initial solution was rigid-body refined and rebuilt manually with Coot (53), replacing the necessary residues with the amino acids determined by DNA sequencing. Structures of the three other Fab/peptide complexes were determined by molecular replacement using the partially refined M1 structure. For all four structures, rounds of refinement with Refmac5 in CCP4 were interspersed with manual rebuilding in Coot. All structures were refined further in PHENIX (54) with model building in Coot. In general, cycles of manual model building followed by refinement included real-space refinement in Coot, and real-space, individual B-factor, TLS, and simulated annealing refinement in PHENIX, with final placement of waters and correction of N/O/H flips with MolProbity (55). Final analysis was performed with MolProbity (54). Data collection and refinement statistics are provided in Supplemental Table I. Graphics were generated with PyMOL (the PyMOL Molecular Graphics System, version 1.3; Schrödinger) and VMD (56). Amino acid sequence alignments and display were accomplished with ClustalW (57) and WebLogo (58), respectively.

Molecular docking and molecular dynamics
To perform all-atom, perturbation docking of the Fv of 64-3-7 to a crystalllographic model of H-2Ld/pLd (1LDP; Ref. 59), we used Rosetta Dock (v.2.3) (60). The H-2Ld molecule was prepared for docking by the in silico removal of bound antigenic peptide and carbohydrate, an energy minimization, and a short (~10 ns) molecular dynamics run under isobara-isothermal conditions. Parameters for molecular dynamics simulations are detailed below. The lowest energy conformation of this peptide-free 1LDP complex was taken from the production run and used for docking. Prior to docking, the Fv (lacking pLd46–53) was placed 25 Å from the side of H-2Ld that contained residues 46–53. During the run, the Fv was permitted to change its orientation before docking by translating, rotating, and rocking relative to H-2Ld. Backbone atoms were held rigid with the exception of H-2Ld residues 44–55, and the Fv CDR3 loops and all side chains were allowed to flex. Ten thousand docking solutions were generated and the top 10% scoring solutions (in terms of lowest energy) were clustered based on an all-atom root mean square deviation (RMSD) of 5 Å. Representative sol-
utions from the top 10 scoring clusters were retained. (Nine of the 10 selected models contained an α-helix conformation for these residues.) Of these, one docking solution contained a conformation of residues 46–53 of H-2Ld that was similar to that of the peptide in the x-ray determined Fab/peptide complex. The conformation of H-2Ld from this solution was used as input for the molecular dynamics simulations with the Fv. Calculations were performed using the high-performance computational resources of the Biowulf/Linux cluster at the National Institutes of Health (Bethesda, MD: http://biowulf.nih.gov).

For both the energy minimization and molecular dynamics experiments, molecules were explicitly solvated with TIP3P water molecules and Na+ and Cl− counterions using VMD (56), and simulations were performed using NAMD (v.2.7) (61). For the 1LDP/Fv dynamics, φ/ψ torsion angles for residues 46–53 as well as the χ1 and χ2 values for Trp11 were taken from the crystal structure and were used as constraints during the dynamics simulation. Electrostatic interactions were handled using a particle mesh Ewald summation and included periodic boundary conditions. The CHARMM27 (62) forcefield was used with CHARMM atom types and mesh Ewald summation and included periodic boundary conditions. The system was warmed slowly to 310 K in 10-K increments with each increment running for 5 picoseconds providing enough time for system equilibration at a given temperature. Once the 310 K target temperature was reached, a system was further equilibrated for 50 picoseconds. Data were gathered from a production run that lasted 10 nanoseconds for 1LDP alone, and were extended to 100 nanoseconds for the Fv/H-2Ld complex. A 1-femtosecond integration time step was used along with a 12-Å cutoff. Langevin dynamics were used to maintain temperature, and a modified Nosé–Hoover Langevin piston was used to control pressure.

Results

Direct binding of mAb 64-3-7 to H-2Ld peptides and affinity measurement

Our strategy for elucidating the nature of the PR form of MHC-I molecules has been to exploit the unique properties of the mAb 64-3-7, first mapping the 64-3-7 binding site, then defining it crystallographically, extending the crystallographic findings with additional binding studies, and finally exploring the structure of the PR form with molecular docking and dynamics simulations. Initial characterization of the 64-3-7 binding site on H-2Ld, based on amino acid sequence comparisons, site-directed mutagenesis of related MHC-I molecules, and competition for mAb binding to H-2Ld-positive cells by synthetic peptides, revealed the importance of Q48, P50, and W51 for recognition, and established a segment of the H-2Ldα domain consisting of residues 46–52, EPQAPWM, as the minimal epitope of this mAb (27, 34, 40). To rigorously define the epitope recognized by 64-3-7 and to obtain quantitative data on this interaction, we examined the direct binding of the mAb with immobilized synthetic peptides using SPR (Fig. 1A). A global fit of the data from three experiments for binding of the Fab to the coupled peptide pLd35–55 indicated a K_D of 127 ± 1.4 nM (Fig. 1A).

Using the pLd35–55-coupled surface as the ligand, competition experiments with synthetic peptides and the purified mAb confirmed the minimal core size of the epitope (Fig. 1B). Clearly, this core sequence (EPQAPWM) is sufficient to compete effectively for Ab binding, whereas the two overlapping 6-mers (EPQAPWME and P50R, pKb35–55, or with an irrelevant but similarly coupled control peptide revealed no detectable binding (data not shown).

Using the pLd35–55-coupled surface as the ligand, competition experiments with synthetic peptides and the purified mAb confirmed the minimal core size of the epitope (Fig. 1B). Clearly, this core sequence (EPQAPWM) is sufficient to compete effectively for Ab binding, whereas the two overlapping 6-mers (EPQAPWME and P50R, pKb35–55, or with an irrelevant but similarly coupled control peptide revealed no detectable binding (data not shown).

Crystal structure of the 64-3-7 Fab/peptide complex

To identify directly those atoms that are solvent-exposed in 64-3-7-reactive H-2Ld molecules, to distinguish residues whose side chains directly interact from those that might be involved in the maintenance of the 64-3-7 epitope conformation, and to delineate the extent and details of the Ab-bound surface of the pLd34–53 peptide, and by inference of PR H-2Ld, we obtained x-ray quality crystals of the 64-3-7 Fab complexed with peptides of several different lengths, all containing the core sequence of H-2Ld residues 46–53. Crystals analyzed included one of the alkylated version of the peptide pLd35–55 at a flow rate of 30 μl/min. Arrows indicate the initiation of the injection and the start of the buffer washout. Fab was offered at graded concentrations of 70, 140, 280, 560, and 1120 nM (dotted lines), performed in triplicate, and data, fit globally (solid black lines) to a single site Langmuir model, indicated a K_D of 127 ± 1.4 nM. (Curve fitting in the dissociation phase was limited to the initial 70 s of the washout to minimize the contribution of rebinding.) (B) Competition with truncated peptides defines the core epitope as the EPQAPWM heptamer. Graded concentrations (11, 33, and 100 μM) of the indicated peptides were used in competition for binding as described in Materials and Methods. The indicated peptides (33 μM) were used in binding inhibition studies as detailed in Materials and Methods, and the percentage inhibition of steady-state binding in the absence of competing peptide was determined for each of them.

FIGURE 1. SPR shows the affinity and specificity of mAb 64-3-7 for its binding site on the α-chain of the H-2Ld MHC-I molecule. (A) Soluble Fab fragment of mAb 64-3-7 was offered to a biosensor surface coupled with pLd35–55 at a flow rate of 30 μl/min. Arrows indicate the initiation of the injection and the start of the buffer washout. Fab was offered at graded concentrations of 70, 140, 280, 560, and 1120 nM (dotted lines), performed in triplicate, and data, fit globally (solid black lines) to a single site Langmuir model, indicated a K_D of 127 ± 1.4 nM. (Curve fitting in the dissociation phase was limited to the initial 70 s of the washout to minimize the contribution of rebinding.) (B) Competition with truncated peptides defines the core epitope as the EPQAPWM heptamer. Graded concentrations (11, 33, and 100 μM) of the indicated peptides were used in competition for binding as described in Materials and Methods. The indicated peptides (33 μM) were used in binding inhibition studies as detailed in Materials and Methods, and the percentage inhibition of steady-state binding in the absence of competing peptide was determined for each of them.

FIGURE 1. SPR shows the affinity and specificity of mAb 64-3-7 for its binding site on the α-chain of the H-2Ld MHC-I molecule. (A) Soluble Fab fragment of mAb 64-3-7 was offered to a biosensor surface coupled with pLd35–55 at a flow rate of 30 μl/min. Arrows indicate the initiation of the injection and the start of the buffer washout. Fab was offered at graded concentrations of 70, 140, 280, 560, and 1120 nM (dotted lines), performed in triplicate, and data, fit globally (solid black lines) to a single site Langmuir model, indicated a K_D of 127 ± 1.4 nM. (Curve fitting in the dissociation phase was limited to the initial 70 s of the washout to minimize the contribution of rebinding.) (B) Competition with truncated peptides defines the core epitope as the EPQAPWM heptamer. Graded concentrations (11, 33, and 100 μM) of the indicated peptides were used in competition for binding as described in Materials and Methods. The indicated peptides (33 μM) were used in binding inhibition studies as detailed in Materials and Methods, and the percentage inhibition of steady-state binding in the absence of competing peptide was determined for each of them.

Organization of the complex, structure of the bound peptide, and extent of solvent exposure in the PR molecule

The overall structure of the 64-3-7 Fab is, as expected, that of a typical murine IgG2b Ab (63, 64) that makes contacts to the peptide Ag through characteristic residues of the CDR loops of both the IgG2b H chain and the κ L chain (see Supplemental Table II for an enumeration of the atomic contacts and hydrogen bonds). The peptide residues most important for contacting the Ab are Q48 (24 total atomic contacts), P50 (17 contacts), and W51 (25 contacts), with only four involving M52 (Fig. 2C).

Fig. 3 shows the buried surface portions of H-2Ld peptide segment residues 48–52. Because they are bound to Ab in this

Figure 1A: SPR affinity and specificity of mAb 64-3-7 for its binding site on the α-chain of the H-2Ld MHC-I molecule. (A) Soluble Fab fragment of mAb 64-3-7 was offered to a biosensor surface coupled with pLd35–55 at a flow rate of 30 μl/min. Arrows indicate the initiation of the injection and the start of the buffer washout. Fab was offered at graded concentrations of 70, 140, 280, 560, and 1120 nM (dotted lines), performed in triplicate, and data, fit globally (solid black lines) to a single site Langmuir model, indicated a K_D of 127 ± 1.4 nM. (Curve fitting in the dissociation phase was limited to the initial 70 s of the washout to minimize the contribution of rebinding.) (B) Competition with truncated peptides defines the core epitope as the EPQAPWM heptamer. Graded concentrations (11, 33, and 100 μM) of the indicated peptides were used in competition for binding as described in Materials and Methods. The indicated peptides (33 μM) were used in binding inhibition studies as detailed in Materials and Methods, and the percentage inhibition of steady-state binding in the absence of competing peptide was determined for each of them.
complex, these H-2Ld side chains must of necessity be solvent-exposed in some fraction of the molecules representing the PR form of H-2Ld. These differences were quantified by calculating the solvent-accessibility of the same residues in the H-2Ld structure, residues 46–54 in the Fab/peptide complex, compared with the largely buried in the complete PL H-2Ld crystal structures, and from the PR to PL form of H-2Ld, strongly implying that the same portion of PR molecules, and that is preserved in the transition element, a 3\textsubscript{10} helix, that is present in at least a significant proportion of the molecules representing the PR form to the PL form, residues 47–52 are likely to move from a solvent-exposed conformation, in which they are accessible to mAb 64-3-7, to the mature structure, in which these residues are buried and inaccessible to solvent and incapable of binding to mAb 64-3-7. This structural view of the residues of H-2Ld that interact strongly with 64-3-7 is consistent with published binding studies (27, 40) and our present additional direct binding studies to mouse cells treated with mutant peptides, we previously concluded that H-2Ld polymorphic residues Q48 and P50, and also the conserved residue W51, were all crucial to recognition (40). These results are consistent with the structure of the Fab/peptide complex described in this study. We performed additional binding inhibition studies by SPR that extend these findings. Fig. 1C summarizes these data, indicating that the heptamer EPQAPWM inhibits binding effectively, that hydrophobic substitutions at position 52, Ile or Val for Met, have little influence on binding, and that even an Ala substitution at that position has only a small effect. Alanine substitutions throughout the minimal heptamer reveal that P50 and W51 are the most important for the interaction. Substitution of Q48 by Ala has little or no effect, whereas substitution by Arg, the residue found in H-2Kd and H-2Kb, and of P50 by Arg obliterates the interaction. This indicates that the ability of Q48 and P50 to confer 64-3-7 reactivity on other MHC-I molecules is primarily due to removal of interfering residues (typically Arg at these positions), consistent with the large steric influence of the Arg substitutions (see Supplemental Fig. 1).

Preservation of a 3\textsubscript{10} helix

A 3\textsubscript{10} helix (66) is found in a sampling of MHC-I molecules in the region of residues 49–53 (67). Such a 3\textsubscript{10} helix is also present in the structure of the peptide segment bound to 64-3-7 (Fig. 4) and thus is likely to be present in a proportion of the molecules that are in the PR transition state. The same region of the two published structures of full-length H-2Ld in complex with peptides, 1LDP (59) and 1LD9 (15), also reveals a 3\textsubscript{10} helix, that is, H-bonding from the backbone carbonyl oxygen atom of residue i to the backbone amino H atom of residue i + 3 (Fig. 4D). Also, all other structures of H-2Ld or its platform domain in complex with different TCR (68–71) show the same 3\textsubscript{10} helix. Thus, we infer that this segment moves as a unit from the PR to the PL form of the molecule, accompanied by some changes in side chain rotamer configurations, the most striking of which is rotation of the W51 χ2 dihedral angle by ∼180˚ between the two forms (Fig. 4A, 4B).

Molecular docking and molecular dynamics

We exploited molecular docking and dynamics simulations to visualize the conformation of the unloaded PR form of the H-2Ld molecule in complex with mAb 64-3-7. Molecular docking (protein–protein docking) allows the prediction of contacts between two molecules based on the known structures of the individual uncomplexed components. We used Rosetta (60) as described in Materials and Methods to visualize the docked complex of the Fv of 64-3-7 with H-2Ld from which the bound antigenic peptide had been removed in silico. Contacts between 64-3-7 and H-2Ld residues 46–53 were similar in both the M8 peptide crystal structure and the docked model (Fig. 5A). We observed the preserved 3\textsubscript{10} helix in residues 48–53 in both the docked and the crystal structures. The backbone configuration of residues 48–53 in the crystal structure was the same as in the docked model (RMSD for the superposition was 1.23 Å) (Fig. 5A). Additional views of the docking and the dynamics simulation of the PR conformation are available in Supplemental Video 1. The most important feature

FIGURE 2. Peptide segment residues 46–53 contact CDRs of 64-3-7 H and L chains. (A) Illustration of Fv region of 64-3-7 is shown with stick representation of peptide segment 46–54. (B) “Top” view of (A) showing CDR loops surrounding segment 46–54. (C) Residues contacting segment 46–53 are indicated and color-coded (for clarity, CDR3H contacts are shown here in black).
revealed by the dynamics simulation is that when the region 46–53 is exposed to solvent, as it must be to allow 64-3-7 binding, residues contiguous with this epitopic segment are necessarily drawn away from their native configuration (Fig. 5B). Thus, as W51 moves toward the Fv, it no longer is capable of providing the support of the native position of Y171 of H-2Ld, a residue intrinsic to the formation and structure of the A pocket (Fig. 5C). Additionally, Y45, toward the amino terminal end of the 310 helical segment, is also pulled away and is incapable of contributing its essential role in the formation of the B pocket (Fig. 5B, 5D).

Discussion

The general problem of understanding the dynamic changes that accompany the binding of a small molecule ligand to a receptor glycoprotein has been addressed using structural (nuclear magnetic resonance and x-ray crystallography), thermodynamic, spectroscopic, and molecular modeling techniques (72–74). When high-resolution structures of the liganded and free forms of the receptor are known, visualization of the transition from free to bound conformations may be made (75). However, in the absence of knowledge of the experimentally determined structure of either one of these two forms, computational methods for elucidating such transitions may be employed. Understanding the structural transition that accompanies the peptide loading of MHC-I molecules in the ER is fundamental not only to the specific rules that govern a key step in Ag presentation and the immune response, but it also provides an opportunity to explore the value of a complementary approach in which x-ray crystallography and computational docking/dynamics methods are employed in concert.

Newly synthesized MHC-I molecules complexed with β2m are poised in the ER in a PR form, ready to bind and be stabilized in the mature PL form by peptides destined for display at the cell surface. To study this transition, we used a unique Ab, 64-3-7, that binds the PR form but not the PL form of the mouse MHC-I molecule H-2Ld, as well as other MHC-I molecules with appropriate substitutions. We report the x-ray crystallographic structure of this Ab bound to a peptide segment of the PR form of H-2Ld. The structure of the peptide segment, defined by binding studies to be a core heptamer (Fig. 1 and Ref. 40), is well visualized in the complex. Because this segment of the H-2Ld α1-domain is Ab-accessible, it is solvent-exposed in some proportion of PR molecules (Fig. 3C). The published crystal structures of H-2Ld (1LDP; Ref. 59) and 1LD9 (15) reveal that residues P50, W51, and M52 are sequestered from solvent and interact with other residues in mature PL H-2Ld mol-
Residues 49–53 form a β_{10} helix in the peptide segment bound to 64-3-7, and hence this conformation may be found in the PR form (Fig. 4B). They also form a β_{10} helix in the PL form of the molecule (Figs. 4B, 5A, 5B). This suggests that the secondary structure of this segment, although changing its position, undergoes minimal change in conformation on peptide binding. A smaller peptide, PQAPWM, that only binds weakly failed to crystallize with 64-3-7 Fab. Perhaps the longer peptides are better able to maintain the helical conformation needed for binding to 64-3-7. (However, our data do not distinguish between a pre-existing helix and one selected from an ensemble of molecules by the Ab. That 64-3-7 is an effective reagent in Western blotting is consistent with both possibilities but also suggests that an Ab that sees a "linear epitope" may recognize a secondary structure element.) Nevertheless, extended molecular dynamics simulations of the docked H-2L, with release of constraints on the β_{10} helix, and removal of both the Fv and the antigenic peptide revealed preservation of at least one i to $i + 3$ H-bond between the five residue pairs (49–52, 50–53, 51–54, 52–55, and 53–56) most of the time (data not shown). This would support the view that the β_{10} helix is not "induced" by the Ab. We previously suggested that this 46–53 segment may form part of a conserved hinge (67), which on changing from the PR to the PL conformation moves to a position that supports binding of the antigenic peptide. Fig. 6 illustrates how residues 46–53 may participate as a hinged unit. Measurement of the deviation of backbone atoms between 1LD9 and 1LDP and the corresponding atoms of 1LD9 as docked to the Fv suggests that the backbone bonds that "define" the borders of the hinges are in the vicinity of A40 and E53 (Fig. 6).

We observe that classical MHC-I molecules of a number of species, including humans and mice, that bind peptide ligands contain the β_{10} helix and share striking sequence similarity (Supplemental Fig. 1). Our observations on the dynamic mobility of the β_{10} helix-containing segment provide a rationale for the conservation of this structural feature. This suggests that this helix-containing hinge plays a critical role in supporting and stabilizing peptide binding, and thus Ag presentation.

Molecular dynamics simulations have been applied to MHC-I (76–79) and MHC-II (80) in efforts to explore both peptide-bound and peptide-free states and to elucidate the differences between variant HLA-B*44 molecules that differ in their tapasin dependence (78, 79). In simulations of peptide-free MHC-I the binding region at the N terminus of the peptide remained close to that of the PL state, whereas the region known to bind the C terminus showed greater dynamic fluctuations. This suggested that F pocket...
deviations were dependent on tapasin for the tapasin-dependent protein HLA-B*44:02. Greater deviations were observed for the tapasin-independent HLA-B*44:05 and were proposed to account for the differences. In this study, we have exploited the unique mAb 64-3-7, which captures at least a subset of the PR form of MHC-I molecules, to first identify the conformation of its MHC-I epitope, and we then extended this observation by docking and dynamics studies. These studies reveal that the 64-3-7 molecules have significant distortions in residues crucial to the formation of the A and B pockets that accommodate the amino terminal regions of the antigenic peptide. Because 64-3-7 is a unique Ab that binds PR H-2Ld with sufficient affinity to immunoprecipitate PR H-2Ld of the antigenic peptide. Because 64-3-7 is a unique Ab that binds PR MHC-I with sufficient affinity to immunoprecipitate PR H-2Ld molecules in the PLC, we can only address the conformation of the residues recognized. It would, of course, be advantageous to have a library of Abs that would decorate different regions of PR H-2Ld to probe other parts of the peptide-free PR molecule, but we know of no other mAbs suitable for such a study. Our results complement those obtained by dynamics simulations alone, and together suggest that the PR form of the MHC-I molecule has unformed A and B pockets and is thus unable to anchor the peptide N terminus and the residue at P2, respectively. The results also suggest that under the influence of tapasin (or in the absence of tapasin for tapasin-independent molecules) such molecules may have an unformed F pocket as well. It is remarkable that the two regions involved, residues 46–53 (for the A and B pockets) and the region surrounding residue 116 (critical to the F pocket), are located at symmetrical parts of the α1 and α2 domains, respectively.

Our docking simulation, followed by molecular dynamics of 64-3-7 with the peptide-free H-2Ld (Supplemental Video 1), shows the 46–53 peptide segment bound to the Fv domain of the mAb. The great similarity in binding and conformation between the crystal structure and the docking cross-validates both structures (Fig. 5A). The mobility of the 46–53 segment seen in the PR structure as visualized in the docked model has major effects on critical parts of the peptide binding groove. Antigenic peptides bind tightly to their respective MHC-I molecules by virtue of side chain interactions with several pockets found in the MHC groove (29, 30). Although crucial pockets may differ for various MHC-I gene products, the A and F pockets perform similar functions for most MHC-I molecules. The A pocket coordinates the N-terminal amino group with conserved H bonds, and the F pocket accommodates the side chain of the carboxyl-terminal amino acid. Other pockets, particularly the B pocket, originally called the 45 pocket, play important roles in most, but not all, MHC-I molecules. For H-2Ld, whose peptide binding motif commonly includes a proline at position 2 of the peptide (24), a small B pocket is particularly important. The molecular dynamics simulation of the docked Ab with the PR form of H-2Ld indicates that residues Gln49, Pro50, Trp51, and Met52 (which directly bind 64-3-7) are distant from their positions in the mature structure, as are residues adjacent to the 46–53 region. For example, Trp51 is distant from its contacts in the PL form and thus does not buttress Tyr171, which is a critical component of the A pocket. Tyr45, adjacent to the 46–53 peptide segment, is freely accessible to solvent in the dynamics-generated PR form, thus incapable of participating in the formation of the B pocket (Fig. 5D, Supplemental Video 1).

The results reported in this study establishing a role for the 310 helix-containing hinge located in the α1 domain of peptide-binding MHC-I molecules must also be interpreted in terms of the relationship of peptide binding to PR MHC-I and the release of the PL molecules from the PLC. The release of the newly loaded MHC-I molecule from the PLC indicates that significant conformational change takes place in the tapasin-binding region concomitant with peptide binding, which requires (or induces) the formation of well-formed pockets, in particular A, B, and F. Thus, a largely cooperative effect on peptide binding is accompanied by the 310 helix hinge flip of segment 46–53, which occurs coordinated with a significant conformational change in the tapasin binding site. Site-directed mutagenesis and coprecipitation experiments have mapped the tapasin binding site to a region surrounding MHC-I residue T134 that lies in a position in the α2 domain pseudosymmetrical to the location of the 310 helix hinge described in this study (27, 28, 41, 81). Supporting the importance of a structural contribution of the F pocket and residues surrounding it in tapasin dependence, recent studies comparing tapasin interactions and MHC-I conformational flexibility as assessed by molecular dynamics simulations exploiting the single amino acid variants HLA-B*44:02 (tapasin dependent) and HLA-B*44:05 (tapasin independent) suggest that conformational changes reminiscent of those that take place at residues 46–52 may also take place around residues 114 and 116, which form the foundation of the F pocket (5).

Peptide editing for MHC-II molecules, which takes place in an endosomal compartment, is dependent on the catalytic chaperone DM, whose binding site has been mapped to a region homologous to the 64-3-7 binding site on MHC-I. Although the precise mechanism by which DM effects peptide exchange on MHC-II remains controversial (82–88), recent evidence suggests that the ability of MHC-II to interact with DM is driven by a conformational change in the region of the MHC-II α-chain 310 helix (89). In this regard, tapasin and DM may both function as chaperones that give MHC-I and MHC-II molecules, respectively, a chance to fold around tightly binding antigenic peptides needed for molecular stability and effective immune function.

Acknowledgments
We thank Mark Garfield and Jan Lukzó of the Research Technologies Branch of the National Institute of Allergy and Infectious Diseases for N-terminal protein sequencing and peptide supply and analysis, respectively. We thank Rose Mage, Jon Yewdell, and Sam Xiao for comments on the manuscript.

Disclosures
The authors have no financial conflicts of interest.

References

