Exhaustion of Cytotoxic Effector Systems May Limit Monoclonal Antibody-Based Immunotherapy in Cancer Patients

Frank J. Beurskens, Margaret A. Lindorfer, Mohammed Farooqui, Paul V. Beum, Patrick Engelberts, Wendy J. M. Mackus, Paul W. H. I. Parren, Adrian Wiestner and Ronald P. Taylor

J Immunol 2012; 188:3532-3541; Prepublished online 24 February 2012; doi: 10.4049/jimmunol.1103693
http://www.jimmunol.org/content/188/7/3532

Supplementary Material

http://www.jimmunol.org/content/suppl/2012/02/24/jimmunol.1103693.DC1

References

This article cites 50 articles, 27 of which you can access for free at:
http://www.jimmunol.org/content/188/7/3532.full#ref-list-1

Why *The JI*? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Exhaustion of Cytotoxic Effector Systems May Limit Monoclonal Antibody-Based Immunotherapy in Cancer Patients

Frank J. Beurskens,†,*1 Margaret A. Lindorfer,†,*1 Mohammed Farooqui,‡
Paul V. Beum,† Patrick Engelberts,* Wendy J. M. Mackus,*2 Paul W. H. I. Parren,*
Adrian Wiestner,‡ and Ronald P. Taylor†

The CD20 mAb ofatumumab (OFA) induces complement-mediated lysis of B cells. In an investigator-initiated phase II trial of OFA plus chemotherapy for chronic lymphocytic leukemia (CLL), OFA treatment promoted partial CLL B cell depletion that coincided with reduced complement titers. Remaining CLL B cells circulated with bound OFA and covalently bound complement breakdown product C3d, indicative of ongoing complement activation. Presumably, neither complement- nor effector cell-based mechanisms were sufficiently robust to clear these remaining B cells. Instead, almost all of the bound OFA and CD20 was removed from the cells, in accordance with previous clinical studies that demonstrated comparable loss of CD20 from B cells after treatment of CLL patients with rituximab. In vitro experiments with OFA and rituximab addressing these observations suggest that host effector mechanisms that support mAb-mediated lysis and tumor cell clearance are finite, and they can be saturated or exhausted at high B cell burdens, particularly at high mAb concentrations. Interestingly, only a fraction of available complement was required to kill cells with CD20 mAbs, and killing could be tuned by titrating the mAb concentration. Consequently, maximal B cell killing of an initial and secondary B cell challenge was achieved with intermediate mAb concentrations, whereas high concentrations promoted lower overall killing. Therefore, mAb therapies that rely substantially on effector mechanisms subject to exhaustion, including complement, may benefit from lower, more frequent dosing schemes optimized to sustain and maximize killing by cytotoxic immune effector systems. The Journal of Immunology, 2012, 188: 3532–3541.

The B cell-targeting CD20 mAbs, rituximab (RTX) and ofatumumab (OFA), achieve the high levels of cytotoxicity necessary for effective cancer treatment by using effector mechanisms of the body’s innate immune system (1–11). These mechanisms include complement-dependent cytotoxicity (CDC), Ab-dependent cell-mediated cytotoxicity (ADCC), and phagocytosis. In CDC, mAb-targeted cells activate the classical pathway of complement by which they are covalently tagged with activated complement protein fragments C4b and C3b, and are then lysed because of generation of membrane attack complexes (12–14). However, the increased understanding of immunotherapeutic mAb cytotoxic mechanisms, including that of alemtuzumab (ALM), which also kills targeted cells by CDC (15, 16), has not yet led to scientifically formulated fundamental approaches to dosing regimens. Indeed, most modifications of dosing strategies have been empirical, with the unstated presumption that for CD20 mAbs, the usual weekly 375 mg/m2 RTX treatment is likely to be close to an optimal dosage (17–19). For the CD52 mAb ALM, dosing has been set at 10–30 mg three times weekly.

Because of low CD20 expression on chronic lymphocytic leukemia (CLL) cells together with high tumor burden, the efficiency of OFA-mediated CDC is particularly relevant for CLL treatment (6, 8, 10, 20–22). As part of a phase II trial in CLL (NCT01145209) combining i.v. OFA infusion with chemotherapy, we investigated the in vivo consequences of OFA treatment on circulating B cells, and evaluated absolute lymphocyte counts (ALC), complement consumption, C3 fragment deposition on cells, and levels of B cell-associated CD20 and bound OFA.

At the trial start, patients had high burdens of circulating B cells that were significantly reduced by day 29. In addition, large reductions in complement titers were observed, most notably after the first OFA infusion. Intriguingly, nondepleted cells included B cells with substantial amounts of deposited complement C3 breakdown fragment C3d; these cells could continue circulating for extended time periods. Based on these findings, we conducted parallel quantitative in vitro investigations comparing OFA and RTX with respect to their potential to activate and consume complement, and to promote CDC upon binding to CD20+ cells.

In vitro studies demonstrated the ability of OFA to induce robust CDC in which only a fraction of available complement components...
were required to effect cell killing. Using high cell burden conditions, we demonstrated that complement could be severely depleted, leading to inadequate killing of a second target cell challenge. Significantly, we were able to reduce complement consumption and retain killing capability by reducing OFA concentrations. Our studies suggest that standard doses of CD20 mAb, in contrast with current dogma, may be excessive, resulting in wasteful complement consumption that depletes the body’s complement reservoir and cytotoxic capacity. This insight provides a framework for the design of mAb-based immunotherapy regimens that preserve complement, as well as other effector functions, thus leading to increased overall tumor cell killing and potentially enhanced efficacy.

Materials and Methods

National Institutes of Health clinical trial NCT01145209

During cycle 1, patients received i.v. OFA (day 1, 300 mg; day 8, 1 g) and either fludarabine (FO; 25 mg/m² days 2–6) or fludarabine 25 mg/m² and cyclophosphamide 250 mg/m² (FCO; days 2–4). During cycle 2 (day 29), patients received 1 g OFA plus chemotherapy. Blood samples from patients N1 to N9 (obtained with informed consent) were drawn immediately before starting OFA infusions and several times after infusions started. ALC were determined at the National Institutes of Health clinical laboratory. Analyses of B cells were based on flow cytometry protocols described in previous studies (23, 24). B cells were identified by light scattering and development with PE CD19 and PERCP CD45. CD20 was measured by reacting washed whole-blood samples with excess OFA and developed with Alexa (Al) 488 mAb HB43 (specific for human IgG Fc). C3b deposition, we reacted saturating concentrations of mAbs with B cells (15 min at room temperature. C5-deficient serum was added (final concentration of 20%) followed by incubation at 37°C for 45 min. After washing, FITC-conjugated polyclonal Abs against C4c (F0169) (Dako, Copenhagen, Glostrup, Denmark) were added (1:100) and samples incubated for 30 min at 4°C and analyzed by flow cytometry, with readouts being mean fluorescent intensities.

Cell lines and primary cells

Human Burkitt’s lymphoma cell lines Daudi, Raji (European Collection of Cell Cultures, Porton Down, U.K.), Z138 mantle cell lymphoma cell line (27), and diffuse large B cell lymphoma cell line SU-DHL-4 (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) were cultured in RPMI 1640 containing 10% heat-inactivated calf serum, 100 U/ml penicillin, 100 µg/ml streptomycin, and 4 mM l-glutamine (Invitrogen, Carlsbad, CA). All cell lines were cultured in RPMI 1640 containing 10% heat-inactivated calf serum, 100 U/ml penicillin, 100 µg/ml streptomycin, and 4 mM l-glutamine (Invitrogen, Carlsbad, CA) (28). Wi38-133 cells were procured by Dr. George Hale (Oxford University). Blood samples were obtained from CLL patients at the UVA Hospital (not on the trial, numbers V1–V16), and B cells were isolated using Ficoll-Paque (10, 29).

Serum

Pooled normal human serum (NHS) AB was from Sanquin (The Netherlands) or was prepared from pooled sera (25, 30). Complement-deficient serum and components were from Quidel (San Diego, CA), and C3-depleted (immunodepleted) sera were from Complement Technology (Tyler, TX).

mAbs

OFA (2F2, Arzerra), and 11B8 are human IgG1, CD20 Abs generated in HuMab mice (6, 8, 10, 20–22). HuMab K-18 (human IgG1), a human Ab against irrelevant Ag (keyhole limpet hemocyanin), is an isotype control. RTX (Mabthera), a chimeric IgG1, was from Roche (Basel, Switzerland) and the UVA pharmacy. ALM (Campath-1H, anti-CD52) was from Genzyme (Cambridge, MA) and the UVA pharmacy. RTX and OFA were labeled with Al488 (Invitrogen) to the same fluorochrome/protein ratios of 1–2 following the manufacturer’s instructions; CDC activity of labeled mAbs was equal to that of unlabeled starting material (not shown). MAb 5G9, specific for C3b/C3c, has been described previously (25, 31).

CDC assays

CDC assays were conducted using previously described procedures (10, 21, 25). Cells were incubated at 37°C with mAbs in NHS for periods of between 15 min and 1 h, and after washing, viability was determined by staining with TO-PRO 3 or propidium iodide. Under these brief incubation conditions, there was no killing of cells reacted with mAbs in the absence of NHS, indicating little, if any, apoptosis. In assays described in Supplementary Figs. 2 and 3, cells were opsonized with mAbs for 15 min at room temperature, washed twice, and resuspended in RPMI 1640/10% FCS and pooled NHS or complement-component–deficient sera (20% v/v) was added. After incubation for 30–60 min at 37°C, cells were harvested and lysed and was detected by flow cytometry (FACSCanto II; BD) based on propidium iodide or TO-PRO 3 uptake. In CDC experiments described in Figs. 2–4 and Supplemental Fig. 4, cells (10⁷–10⁸/ml) were combined with media or with pooled NHS (10–50%) and either OFA or RTX added. After incubation for 10–30 min at 37°C, cells were washed and CDC was determined based on staining with TO-PRO 3 (FACSCalibur; BD). In two-step experiments (Fig. 4), similar procedures were followed, except after the first incubation more PKH26-labeled cells (28, 29) were added, with additional mAb, for incubation in step 2.

Cellular deposition of C3b and C4b

Deposition of C3b/C4b fragments on OFA- or RTX-opsonized cells was determined according to published procedures (23, 30). To assess cellular C4b deposition, we reacted saturating concentrations of mAbs with B cells for 15 min at room temperature. C5-deficient serum was added (final concentration of 20%) followed by incubation at 37°C for 45 min. After washing, FITC-conjugated polyclonal Abs against C4c (F0169) (Dako, Glostrup, Denmark) were added (1:100) and samples incubated for 30 min at 4°C and analyzed by flow cytometry, with readouts being mean fluorescent intensities.

CH50 assays

Complement hemolytic assays (CH50) were performed according to standard procedures (33, 34). In brief, washed sheep E (Lampire) were reacted with anti-sheep E stroma (hemolysin; Sigma), washed, and reconstituted to a hemocrit of 2% Ab-opsonized sheep erythrocytes (EA) in gelatin veronal buffer supplemented with Ca²⁺ and Mg²⁺ (GVB⁺⁺). Test and standard sera were first diluted 10-fold in GVB⁺⁺ and then further diluted sequentially by factors of 2 across 6 wells of a conical 96-well plate. The hemolytic reaction was initiated by addition of 25 µl of 2% EA to 25 µl diluted sera. Assay plates were incubated for 60 min at 37°C. The reaction was stopped by addition of 200 µl ice-cold GVB⁺⁺ to each well. The lysed EA were pelleted by centrifugation at 1800 g for 3 min, the supernatant removed to a flat-bottom plate, and the optical densities measured at 405 nm. CH50 titers were reported relative to a NHS pool. Assays were performed in triplicate.

Statistics

All experiments were conducted independently two or more times, and representative results are presented. Where replicates measurements were performed, means and SD are provided. Unpaired two-tailed t tests (SigmaStat) were used to compare selected results in Fig. 2.

Results

OFA infusion in CLL patients rapidly exhausts complement and induces loss of CD20 from the tumor cells

A first group of nine CLL patients (N1–N9, NCT01145209) was treated with OFA (300 mg for the first dose [day 1] and 1 g for all doses thereafter [days 8 and 29]) in combination with chemotherapy (Table I). Blood samples were collected before, during, and after OFA infusions on days 1, 8, and 29. Measurements included ALC, deposition of C3 fragments on target cells, complement titers, and binding of OFA to circulating cells.

Significant B cell depletion in peripheral blood was achieved with the first cycle (Fig. 1A). However, six of eight patients had ALC in excess of 2000 cells/µl on day 29 (one patient withdrew on day 10). The results of our measurements on blood samples

Downloaded from http://www.jimmunol.org/ by guest on June 30, 2021
Table I. Patient characteristics

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Age (y)/Sex</th>
<th>Rai Stage</th>
<th>Cytogenetics</th>
<th>Treatment</th>
<th>Pre-Alc 0 (1000/l)</th>
<th>Pre-MOF (MESF)</th>
<th>Maximum Bound C3d of OFA (MESF)</th>
<th>% Saturation</th>
<th>Maximum Bound C3d of OFA (MESF)</th>
<th>% Saturation</th>
<th>Maximum Bound CH50 b (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>26/M</td>
<td>II</td>
<td>11q, 13q</td>
<td>FCO</td>
<td>154</td>
<td>0.05</td>
<td>1000 ± 100</td>
<td>100</td>
<td>1000 ± 100</td>
<td>100</td>
<td>1000 ± 100</td>
</tr>
<tr>
<td>N2</td>
<td>49/F</td>
<td>III</td>
<td>14q, 1q</td>
<td>FO</td>
<td>130</td>
<td>0.05</td>
<td>14,300 ± 200</td>
<td>68</td>
<td>14,300 ± 200</td>
<td>68</td>
<td>14,300 ± 200</td>
</tr>
<tr>
<td>N3</td>
<td>52/F</td>
<td>III</td>
<td>11q, 13q</td>
<td>FCO</td>
<td>164</td>
<td>0.05</td>
<td>16,300 ± 200</td>
<td>87</td>
<td>16,300 ± 200</td>
<td>87</td>
<td>16,300 ± 200</td>
</tr>
<tr>
<td>N4</td>
<td>56/F</td>
<td>III</td>
<td>14q, 1q, 17q</td>
<td>FO</td>
<td>156</td>
<td>0.05</td>
<td>15,400 ± 200</td>
<td>160</td>
<td>15,400 ± 200</td>
<td>160</td>
<td>15,400 ± 200</td>
</tr>
<tr>
<td>N5</td>
<td>56/M</td>
<td>III</td>
<td>11q, 13q</td>
<td>FCO</td>
<td>154</td>
<td>0.05</td>
<td>15,200 ± 200</td>
<td>68</td>
<td>15,200 ± 200</td>
<td>68</td>
<td>15,200 ± 200</td>
</tr>
<tr>
<td>N6</td>
<td>61/F</td>
<td>II</td>
<td>13q, 17p</td>
<td>FCO</td>
<td>164</td>
<td>0.05</td>
<td>15,300 ± 200</td>
<td>68</td>
<td>15,300 ± 200</td>
<td>68</td>
<td>15,300 ± 200</td>
</tr>
<tr>
<td>N7</td>
<td>57/F</td>
<td>IV</td>
<td>13q, 17p</td>
<td>FO</td>
<td>164</td>
<td>0.05</td>
<td>16,400 ± 200</td>
<td>96</td>
<td>16,400 ± 200</td>
<td>96</td>
<td>16,400 ± 200</td>
</tr>
<tr>
<td>N8</td>
<td>66/F</td>
<td>II</td>
<td>14q, 13q</td>
<td>FCO</td>
<td>154</td>
<td>0.05</td>
<td>15,500 ± 200</td>
<td>68</td>
<td>15,500 ± 200</td>
<td>68</td>
<td>15,500 ± 200</td>
</tr>
<tr>
<td>N9</td>
<td>66/M</td>
<td>II</td>
<td>13q, 17p</td>
<td>FCO</td>
<td>164</td>
<td>0.05</td>
<td>16,600 ± 200</td>
<td>68</td>
<td>16,600 ± 200</td>
<td>68</td>
<td>16,600 ± 200</td>
</tr>
</tbody>
</table>

No patient had bulky disease (>5 cm).

* Pre-Ref C3d b (MESF) average ± SD

* Maximum Bound C3d of OFA (MESF) average ± SD

* Maximum Bound C3d of OFA (MESF) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)

* Maximum Bound CH50 b (%) average ± SD

* Percentage Saturation of C3d of OFA (MESF)
10% of the amount present in normal plasma. Nevertheless, killing of high tumor cell loads required high serum concentrations (i.e., 50% NHS; Supplemental Fig. 4). OFA induced substantially more CDC of Daudi and Z138 cells than did RTX.

Dose-response tests: CLL cells

It has been reported that OFA promotes high levels of CDC and kills CLL B cells more effectively than RTX (6, 8, 10, 20–22). To evaluate this phenomenon quantitatively, we labeled OFA and RTX with fluorophore Al488 (which does not affect CDC potency) (10, 21) and evaluated CDC, cell binding, and C3b deposition on CLL cells from 10 patients (seen at the UVA Hospital) not in the trial (V1–V10; Fig. 2). To model physiological conditions, we used 50% NHS and varying cell densities typical for CLL (i.e., 10^7 and 10^8 cells/ml). The results, using B cells from two representative CLL patients, reveal the following: saturation of OFA binding to cells in media is achieved at 10 μg/ml OFA (Fig. 2B, 2C), and substantial CDC is observed at this concentration in 50% NHS for both cell burdens. At cell inputs of 10^8 cells/ml, OFA concentrations of 100 μg/ml and 50% NHS maximize CDC and C3b deposition (Fig. 2D–G); less OFA-mediated CDC occurs if less complement (lower % NHS) is available. Finally, even at RTX concentrations of 100 μg/ml, there was little CDC, but complement activation was evident, as demonstrated by C3b deposition; thus, RTX would appear to be less efficient in making use of complement to kill cells.

Complement depletion

We reported that CD20+B cell lines opsonized with RTX (100 μg/ml) at high cell burdens (10^8 cells/ml) activate and deplete complement in vitro (30). The present correlative results for CLL patients treated with OFA demonstrate complement consumption in vivo (Fig. 1D). We extended our in vitro measurements to include ALM, with Wien cells as targets because these cells can be...
killed in NHS via CDC induced with either RTX, OFA, or ALM. We varied target cell burdens with mAb concentrations held at 100 μg/ml, and measured CDC and complement depletion. In intact 50% NHS, all three mAbs promote CDC, but complement was depleted at high cell burdens (10^8 cells/ml; Fig. 3A). Similar results for CDC and complement depletion were obtained when OFA and RTX were tested with Daudi or Raji cells (not shown).

We next used varying concentrations of CLL cells from six additional UV A CLL patients (V11–V16) and evaluated CDC and complement consumption mediated by OFA, RTX, and ALM in 50% NHS. Representative results from two patients are shown in Fig. 3B and 3C. OFA and ALM induced CDC at high cell burdens (10^8/ml), and complement was consumed. RTX promoted modest CDC of the B cells of patient V11 (Fig. 3B), and some complement was consumed. However, RTX-opsonized cells of patient V12 were not killed by CDC, and less complement was consumed for this RTX-treated sample (Fig. 3C).

Alternative mAb dosing strategies better preserve complement activity for more effective CDC

Our findings raise fundamental questions with respect to mAb dosing paradigms in cancer immunotherapy. If a mAb depends on host innate effector systems (CDC, ADCC, or phagocytosis) to mediate cytotoxicity of malignant cells, it would seem important to determine the most effective immunotherapeutic doses, and their optimal timing, rather than to base treatment on maximum
tolerated doses. Circulating cell burdens in CLL, readily accessible to infused mAbs, can be quite high (23, 24, 37, 38). The infused mAb may thus promote clearance/destruction of cells at the cost of available effector mechanisms. Therefore, several hours after mAb infusion, as more cells reequilibrate to the bloodstream from other compartments, effector functions such as complement may be saturated or exhausted for periods of days or weeks. Under these conditions, clearance/killing of the next wave of malignant cells may be severely compromised (11, 23, 39). To examine this potential problem, we established a two-step model to approximate likely scenarios with respect to infusion of mAbs for CLL treatment, based on treatment paradigms currently used for RTX and OFA.

In step 1, varying amounts of OFA were added to multiple identical aliquots of Daudi cells in 50% NHS; after a 1-h incubation at 37°C, cell death and C3b deposition were determined. In step 2, an equal number of naive PKH26-labeled Daudi cells were added along with additional mAb. These PKH26-labeled cells represent CLL cells reequilibrating into the bloodstream. The mixtures were incubated for an additional 1 h at 37°C, and CDC and C3b deposition on the PKH26 cell population was measured. The results for OFA and RTX are shown in Fig. 4A–H and I–K, respectively.

This two-step experiment demonstrates that use of moderate to high concentrations of OFA in step 1 (4–100 μg/ml) promotes high levels of CDC of unlabeled Daudi cells (95% CDC) in 50% NHS (Fig. 4A, open circles; UNL). However, PKH26-labeled cells added in step 2 (along with an additional 100 μg/ml OFA) are effectively lysed only in samples that contained relatively low concentrations of OFA in step 1 (<4 μg/ml; Fig. 4B, filled circles, PKH). That is, although “excess” additional OFA (100 μg/ml) was added in step 2, only a fraction of PKH26-labeled Daudi cells were killed when added to samples exposed to greater OFA concentrations in step 1 (39 and 23% CDC, for samples reacted with 10 and 100 μg/ml OFA, respectively). The bell-shaped curve in Fig. 4C represents the sum of CDC achieved for both populations in this two-step experiment (% CDC of unlabeled cells in step 1 plus % CDC of PKH26-labeled cells in step 2). Thus, most effective killing is achieved with an OFA concentration (4 μg/ml) just sufficient to achieve maximal killing in step 1 (Fig. 4A). Presumably, complement activity is preserved under these conditions, and the second wave of B cells is effectively killed in step 2, whereas greater OFA concentrations in step 1 do not markedly increase killing of the first wave of cells but promote exaggerated complement activation and consumption. This interpretation is supported by examining C3b deposition in our two-step paradigm (Fig. 4D, 4E). C3b deposition for unlabeled cells modestly increases as the OFA input increases from 10 to 100 μg/ml in step 1 (Fig. 4D), indicating increasing complement activation and deposition even though maximal cell killing is already achieved. In contrast, C3b opsonization of the PKH26-labeled cells (after addition of OFA at
100 μg/ml decreases continuously for samples in which greater OFA concentrations were used in step 1 (Fig. 4E), indicating that complement was consumed in step 1, thus limiting C3b opsonization of the PKH26 cells in step 2.

We next performed a more comprehensive experiment in which OFA doses in steps 1 and 2 were varied (Fig. 4F–H), and the findings are consistent with the earlier observations. Close to the maximum sum of CDC for the two populations was achieved at OFA inputs of only 4 μg/ml in step 1 and 20 μg/ml in step 2 (Fig. 4H). Similar patterns were evident based on evaluation of C3b deposition on unlabeled cells after step 1 or on PKH26-labeled cells after step 2. (F–H) Similar experiment, except OFA added in step 2 was 100 or 20 μg/ml. Close to maximal C3b deposition and CDC is achieved for OFA concentrations of 4 μg/ml in step 1 and 20 μg/ml in step 2. (F–H) Similar to (A)–(C), except for RTX. Means and SD (n = 2) are displayed; usually SD are smaller than symbols. Each figure represents two or more experiments.

Discussion

The most important finding in this study is that the potential of the complement cascade to support mAb-mediated CDC of tumor cells is finite and saturable, and the degree of CDC is strongly influenced by the nature of the opsonizing mAb and its concentration. Our findings in the CLL clinical study demonstrate that at high initial cell burdens, infusion of OFA activates and consumes complement, indicating more deposited C4b was covalently bound to the cell membrane; this finding may be because OFA binds close to the cell membrane; this finding may be because OFA binds close to the cell membrane. The infusion of OFA may promote chronic low-level complement activation as it targets CD20 on cells.

Our findings of the rapid loss of CD20 caused by infusion of OFA are most likely mediated by trogocytosis, but direct internalization of OFA by the CLL B cells may also play a role in loss of CD20 (40, 41). However, we have directly compared the relative rates and extent of loss of CD20 for trogocytosis versus internalization, and these experiments demonstrate that trogocytosis reduces CD20 expression more strongly and in a shorter time frame (42). We compared ALM, OFA, and RTX with respect to their potential to use and activate individual components of the classical pathway of complement activation. OFA is more effective in promoting C4b deposition on opsonized Wien cells than RTX or ALM (Supplemental Fig. 1). The results are not due to higher densities of cell-bound OFA; binding of RTX and OFA to Wien cells was comparable and OFA binding was lower than ALM binding. Less cell-associated C4b was released from OFA-opsonized cells via acid wash than from RTX- or ALM-opsonized cells, indicating more deposited C4b was covalently bound to the cell membrane; this finding may be because OFA binds close to the cell membrane. CDC studies in sera depleted of C2 or C3 provide additional support for the concept that cell-bound OFA can use limited amounts of complement to lyse cells, and that complete serum therefore initially contains a relatively large excess of complement components required for cell killing (Supplementary Figs. 2, 3).
Indeed, because of downstream amplification in the complement cascade, small amounts of early components are adequate to allow for deposition of large amounts of C3 activation fragments on cells (12–14). However, complement component C2, at lowest concentration in the plasma, is often the limiting factor that is first depleted during classical pathway activation. Based on our previous observations of C2 consumption in CLL patients who received RTX therapy (25, 30), it is reasonable to predict that C2 was also first depleted in these studies. These considerations, taken in context with the work of Ziccardi (43), may also explain the sharp drop in CDC observed for serum concentrations of 25% at the higher cell densities (Supplemental Fig. 4). Under these conditions, the potential of C1 inhibitor to control C1 activation may be abrogated, thus leading to uncontrolled activation of C1 followed by complete consumption of C2.

In patients with CLL, circulating B cells in excess of 10^9/ml are commonly observed (23, 24, 37–39), and we reported that infusion of the usual RTX dose can deplete complement in CLL patients for a week or longer (30). We extended these findings and show that at these physiologically relevant cell burdens, complement activity in 50% NHS can be severely depleted (reduced 20-fold) when cells are reacted with mAbs such as ALM or OFA and are killed by CDC (Fig. 3). Indeed, under our standard assay conditions, 50% NHS is required to promote effective CDC at 10^6 cells/ml, and CDC and C3b deposition are substantially reduced if the NHS concentration is reduced only 2-fold to 25% (Fig. 2, Supplemental Fig. 4). Moreover, our two-step experiments described in Fig. 4 provide dramatic evidence that at moderate to high cell burdens, large amounts of mAb indeed promote effective CDC of CLL cells, but if more mAb is added than essentially required, this leads to exhaustion of complement activity and, therefore, additional CDC is severely compromised upon challenge with additional cells, even if adequate mAb concentrations are present. These results, taken along with our previous findings for CLL patients treated with RTX (30), indicate that after the standard (high) mAb doses, patients’ complement levels can be depleted in vivo for periods of several days to >1 wk. It would seem reasonable that mAb dosing strategies that take into account patient complement titers as well as other indices of immune function would help provide guidance for more efficacious, individualized therapies.

On the basis of accumulated evidence, high tumor burdens combined with high mAb concentrations may exhaust effector functions of the body’s innate immune system, including mAb-mediated CDC (Fig. 5). Our results specifically relate to prominent therapeutic mAbs that are highly dependent on Fc-mediated effector functions for target cell cytotoxicity, such as type I CD20 mAbs. Provocative results in uncontrolled trials with RTX suggest that infusion of fresh-frozen plasma to increase or restore complement activity may increase clinical efficacy of single-agent treatment in CLL, in support of our findings (30, 44–46). Our results support this concept with respect to maximizing the potential CDC that can be achieved by normal complement levels in the bloodstream. It is possible, based on findings in several reports, that other effector functions important in mAb-based immunotherapy of cancer, such as ADCC, are similarly subject to exhaustion, likely as a consequence of downmodulation of CD16 and depletion of NK cell-associated perforin and granzymes (47–51). Moreover, the substantial and protracted loss of CD20 mediated by infusions of large doses of mAb, coupled with the loss of potency of cytotoxic effector systems, would generate a “perfect storm” that can allow malignant cells to continue to proliferate for extended time periods, even after infusion of gram quantities of mAb.

We hypothesize that our results not only apply to OFA or RTX treatment, but impact all therapeutic mAbs that use Fc-or complement-mediated effector functions as part of their cytotoxic mechanisms. Ref ormulation of mAb dosing schedules based on more frequent treatments (several times per week) with lower doses may allow for recovery and/or preservation of effector functions between doses (23, 24) and should be investigated. Our study emphasizes that the time-honored approach to use drugs at maximum tolerated doses as derived from the chemotherapy field may not necessarily be optimal for mAb-based immunotherapy of cancer.

Acknowledgments
We thank Marleen Voorhorst for technical assistance and Joost Bakker for graphic design. We also thank the patients for participation in the trial.
Disclosures

F.J.B., P.E., and P.W.H.I.P. are employees of Genmab. W.J.M. is a former employee of Genmab. R.P.T. has received research funding from Genmab. The other authors have no financial conflicts of interest.

References

Supplementary Figure 1. In C5-depleted NHS, opsonization of Wien cells with OFA promotes more deposition of C4b than does opsonization with ALM or RTX. A. C4b deposition, based on an FITC-labeled antibody preparation specific for C4c, was determined directly (filled bars), or after an acid wash (open bars). The means and SD (n=3) are displayed. B. Binding of the opsonizing mAbs (filled bars), based on probing with FITC anti-human IgG, was reduced to background after the acid wash (open bars).
Supplementary Figure 2. OFA- (filled circles) and ALM- (filled triangles) opsonized Wien cells are killed more effectively in C2 depleted serum supplemented with C2 than are RTX-(open circles) opsonized Wien cells. No CDC was evident in the presence of the control mAb, 11B8 (open triangles). Dead cells were identified by uptake of PI.
Supplementary Figure 3. Small amounts of C3, added to serum with very low levels of C3, are adequate to support CDC of OFA-opsonized SU-DHL cells, and similarly support CDC of OFA or ALM-opsonized Wien cells, but RTX-mediated CDC is modest in comparison. A. SU-DHL cells, opsonized with OFA or with RTX. B. Wien cells, opsonized with OFA or RTX or ALM, means and SD (n=3) are provided. The final concentration of anti-C3 mAb 5G9 (added to block residual C3) was 100 μg/mL. C. Dose-response CDC experiment in C3-depleted serum for Wien cells that were opsonized as indicated. In A and B the background CDC in the absence of added C3 was due to small amounts of active C3 still present in the sera. In C, the C3 was removed from NHS by affinity chromatography, and less C3 activity was present. Dead cells were identified by uptake of PI.
Supplementary Figure 4. Dose-response experiments reveal that for high cell densities, CDC mediated by OFA or by RTX requires high complement and mAb inputs. A-B. Daudi cells. C-D. Z138 cells. The mAb concentrations were 10 μg/mL (A and C) and 100 μg/mL (B and D) At low cell densities and in 50% NHS, CDC mediated by OFA and RTX were roughly comparable for Daudi cells, but for Z138 cells, CDC mediated by OFA was substantially higher than CDC mediated by RTX. In these 3D graphs error bars were omitted for clarity. Representative values (means and SD) were as follows: For 10 μg/ml OFA, 25% NHS and 1 X 10^8 Daudi cells cells/ml, CDC was 40±2%; the same conditions for Z138 cells, CDC was 8.8 ± 0.7%. Dead cells were identified by uptake of TOPRO-3.