Targeting TNF-α to Neoangiogenic Vessels Enhances Lymphocyte Infiltration in Tumors and Increases the Therapeutic Potential of Immunotherapy

Arianna Calcinotto, Matteo Grioni, Elena Jachetti, Flavio Curnis, Anna Mondino, Giorgio Parmiani, Angelo Corti and Matteo Bellone

J Immunol 2012; 188:2687-2694; Prepublished online 8 February 2012; doi: 10.4049/jimmunol.1101877
http://www.jimmunol.org/content/188/6/2687

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/02/08/jimmunol.1101877.DC1

References
This article cites 48 articles, 27 of which you can access for free at:
http://www.jimmunol.org/content/188/6/2687.full#ref-list-1

Why *The JI*? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Targeting TNF-α to Neoangiogenic Vessels Enhances Lymphocyte Infiltration in Tumors and Increases the Therapeutic Potential of Immunotherapy

Arianna Calcinotto,*,†,# Elena Jachetti,*,†,# Flavio Curnis,†,# Anna Mondino,†,# Giorgio Parmiani,†,# Angelo Corti,†,# and Matteo Bellone*,†

Abnormal tumor vasculature impairs T lymphocyte adhesion to endothelial cells and lymphocyte extravasation into neoplastic tissues, limiting the therapeutic potential of both active and adoptive immunotherapies. We have found that treatment of tumor-bearing mice with NGR-TNF, a Cys-Asn-Gly-Arg-Cys peptide-TNF fusion product capable of altering the endothelial barrier function and improving drug penetration in tumors, associated with the intratumor upregulation of leukocyte-endothelial cell adhesion molecules, the release of proinflammatory cytokines and chemokines, and the infiltration of tumor-specific effector CD8+ T cells. As a result, NGR-TNF enhanced the therapeutic activity of adoptive and active immunotherapy, delaying tumor growth and prolonging survival. Furthermore, we have found that therapeutic effects of these combinations can be further increased by the addition of chemotherapy. Thus, these findings might be relevant for the design of novel immunotherapeutic approaches for cancer patients. The Journal of Immunology, 2012, 188: 2687–2694.

Growing tumors develop strategies that directly or indirectly impair effector T lymphocyte functions (1). In addition, the hypoxic tumor microenvironment favors the formation of new vessels (i.e., neangiogenesis) that are disorganized, tortuous, and more leaky than the normal ones. These vascular abnormalities can increase the interstitial pressure, cause heterogeneous permeability, and promote irregular blood flow (2). Furthermore, angiogenic factors such as vascular endothelial cell (EC) growth factors (VEGF) and fibroblast growth factors can cause downregulation of intracellular adhesion molecule-1/2 (ICAM-1/2), VCAM-1, and CD34 on EC, a phenomenon defined as EC anergy (3). Hence, the interaction of leukocytes with the endothelial lining of vessels is reduced, and effector T cells, regardless of being induced in vivo by vaccination or adoptively transferred (4, 5), may be impaired in their migration into tumor sites and cannot exert the antitumor effects necessary to eradicate the tumor (6, 7).

TNF-α is a cytokine produced in the tumor microenvironment mainly by macrophages, but also by endothelial cells and tumor cells (8). This cytokine can exert potent antitumor effects both in animal models and in patients treated by isolated limb perfusion, a regional cancer therapy used to deliver high doses of TNF into the bloodstream of a limb and to avoid severe systemic side effects (9). In this setting and depending on its dose, TNF can cause endothelial cell activation, increased vessel permeability, endothelial cell damage, and massive hemorrhagic necrosis (9). Although the administration of TNF at therapeutic doses is precluded by its severe systemic toxicity, safe and therapeutic systemic administration can be obtained by targeting TNF to angiogenic tumor vessels. For example, TNF has been fused to Cys-Asn-Gly-Arg-Cys (NGR) (10), a tumor-homing peptide that recognizes an aminopeptidase N (CD13) isoform selectively expressed by endothelial cells in tumor vessels (11, 12). The selective recognition of the endothelial lining of angiogenic tumor vessels by this peptide has also been confirmed with peptide-labeled paramagnetic quantum dots and quantitative molecular magnetic resonance imaging in tumor mouse models (13). Systemic administration of low doses of the NGR-TNF fusion protein can induce antitumor effects stronger than those elicited by similar doses of TNF (14). In addition, the delivery of ultra-low doses (e.g., picograms) of NGR-TNF to the tumor vasculature overcomes major counterregulatory mechanisms and increases the penetration of doxorubicin (DOXO) and other chemotherapy agents in murine models of lymphoma, melanoma, and spontaneous prostate cancer (15, 16). While a primary mechanism of NGR-TNF-induced drug penetration is related to disassembly of endothelial VE-cadherin dependent adherence junctions and alteration of endothelial barrier function in tumors (17), other mechanisms might also be brought into play, such as increased tumor perfusion and reduction of interstitial pressure.

NGR-TNF, either alone or in combination with chemotherapy, is currently being tested in various clinical studies in cancer patients (18, 19).

In this study, we investigated whether selective targeted delivery of NGR-TNF to tumor vessels might promote the activation of
tumor-associated EC and the recruitment of effector T cells, and whether NGR-TNF could be used to ameliorate the efficacy of active or adoptive immunotherapy, alone and in combination with chemotherapy. Our results indicate that treatment of tumor-bearing mice with low doses of NGR-TNF is associated with the upregulation of endothelial cell adhesion molecules in tumor vessels and enhances the local production of immunomodulating cytokines, thereby favoring the extravasation of immune cells and improving therapeutic activity of immunotherapy.

Materials and Methods

Animals, cell lines, and reagents

Wild type C57BL/6J (Charles River Breeding Laboratories; Calco, Italy), heterozygous C57BL/6 transgenic adenocarcinoma of the mouse prostate (TRAMP) (20), C57BL/6-Tg(TcRaFerb) 1100Mjb/J (21) and B6.129S7-Rag1tm1Mom/J (22) mice (23) were housed in a pathogen-free animal facility and treated in accordance with the European Community guidelines. The latter two lines were crossed to obtain RAG-1−/− OTI mice. The in vivo experiments were approved by the Ethical Committee of the Istituto Scientifico San Raffaele. B16-OVA are B16F1 melanoma cells (American Type Culture Collection) expressing the truncated form of OVA lacking the leader sequence (23). RMA is an H-2b Rauscher virus-induced thymoma (24). Cells were maintained in RPMI 1640 with penicillin-streptomycin and 10% heat-inactivated FCS and the medium of B16-OVA cells was supplemented with hygromycin (100 μg/ml). B16F1 melanoma cells were maintained in IMDM with penicillin-streptomycin and 10% heat-inactivated FCS (Euroclone, Pero, Italy), HUVECs (Clonetics, Lonza, Switzerland) were cultured according to the recommended protocols. All experiments were performed with HUVECs at passages 1 to 4. NGR-TNF and TNF and NF were produced and characterized as described in (14), and they were harvested with 0.9% sodium chloride alone. Upjohn (Milan, Italy) and was administered i.p. (4 mg/kg). All drugs were obtained from Sigma-Aldrich (Milan, Italy) for quick freezing. Crystastatic sections (6 μm thick) were prepared, adsorbed on polylysine-coated slides, fixed for 30 min with PBS containing 4% paraformaldehyde. Detection of endothelial cells was done as follows: tissue sections were incubated with 150 μl PBS containing 1% BSA, 0.1% Triton X-100 (PBS-BT), and 5% normal goat serum for 1 h at room temperature. The solution was then removed and replaced with PBS-BT. Immunohistochemistry and scored on blind-coded samples by an expert pathologist as described by Hess Michelini et al. (28). Anti-CD3 (Serotec) immunodetection was performed according to the manufacturer’s instructions. CD3 sections were digitally scanned (ScanScope, Aperio) and then analyzed with the Spectrum Plus software (Aperio).

Mice bearing a 6-d-old B16F1 melanomas were sublethally irradiated, and the next day they were transplanted i.v. with 6 × 105 splenocytes derived from syngenic donors prestimulated 1 wk before by i.d. injection of 5 × 103 TRP-2180–188-pulsed DCs. One gram of tumor tissue was treated with 9 ml Lysis Buffer constituted by 50mM Tris HCl pH 7.3, 2 mM EDTA, 1:500 Protease Inhibitor Cocktail Set (Calbiochem; Gibbstown, NJ). The tumor tissue was homogenized with a mixer and centrifuged at 13,000 × g for 10 min at 4°C. The supernatant was recovered and stored at −80°C. Analysis of soluble molecules was conducted with Mouse CytokineMAP B version 1.0 by Rules Based Medicine (Austin, TX).

Immunofluorescence

Tumors were embedded in Kidlik frozen section medium (Bio-Optica, Milan, Italy) for quick freezing. Cryostatic sections (6 μm thick) were prepared, adsorbed on polysyline-coated slides, fixed for 30 min with PBS containing 4% paraformaldehyde. Detection of endothelial cells was done as follows: tissue sections were incubated with 150 μl PBS containing 1% BSA, 0.1% Triton X-100 (PBS-BT), and 5% normal goat serum for 1 h at room temperature. The solution was then removed and replaced with PBS-BT containing APC-conjugated anti-CD31 mAb MEC-13.3 (1:100) and FITC-conjugated anti-CD8 (1:100) and then incubated for 1 h at room temperature. The slides were rinsed again and incubated for 5 min with PBS containing 0.1 μg/ml DAPI (Sigma) to stain cell nuclei. Sections were examined under a microscope (Carl Zeiss, Axioscope 40FL, original magnification ×630).

Analysis of ICAM-1 expression on HUVEC

Five × 105 HUVEC were detached with trypsin-EDTA, washed, and immediately incubated with TNF or NGR-TNF at various concentrations for 1.5 h on ice. After washing, cells were resuspended in culture medium, incubated for 16 h at 37°C, 5% CO2, and stained with primary mouse anti-human ICAM-1 and secondary goat anti-mouse (BD Biosciences). Samples were analyzed on a FACSCanto system and DEVA software, and data were analyzed using FlowJo software.

In vitro cytolytic assay

B16F1 cells were cultured in 96-well flat-bottom plates with TNF or NGR-TNF (100 ng/ml, 6 × 105 cells per 100 μl) in DMEM complete medium containing 2 μg/ml actinomycin D (200 μl/well, 9 × 6-well plate). After
20 h at 37°C, 5% CO₂, the cytotoxic activity was quantified by standard MTT assay (29).

Statistics
Statistical analyses were performed with unpaired Student t test or Student t test followed by Wilcoxon posttest. Survival curves were compared using the log rank test; p values < 0.05 were considered statistically significant.

Results
NGR-TNF transiently modifies the tumor microenvironment by inducing upregulation of leukocyte-adhesion molecules on endothelial cells, release of cytokines or chemokines, and infiltration by functional CD8⁺ T cells

TNF activates ECs and increases vessel permeability (9). To investigate the effect of NGR-TNF on ECs, we designed an in vitro assay in which the binding phase is limited to 1.5 h on ice. Then the unbound reagent is washed away and cells are incubated overnight to quantify the effects of bound TNF on cells. Therefore, we incubated CD13⁺ HUVECs (30) with NGR-TNF or TNF and measured the cell surface expression of ICAM-1, a molecule involved in leukocyte adhesion and transmigration (31). Both TNF and NGR-TNF induced dose-dependent expression of ICAM-1 on HUVECs (Fig. 1A); however, NGR-TNF was more effective at each dose tested (Fig. 1B).

Tumor cells may express CD13, but they should not express the isoform recognized by NGR-TNF (12). Therefore, we investigated whether B16 melanoma cells expressed CD13 and, more importantly, were targeted by NGR-TNF. As shown in Fig. 1C, B16 melanoma cells expressed CD13, although the commercially available mAb did not allow to identify the specific isoform. When added to the culture medium, both NGR-TNF and TNF did not kill melanoma cells, even at 10 ng/ml, and when combined with DOXO they did not increase the DOXO-mediated cytotoxicity (Fig. 1D). Thus, NGR-TNF does not appear to have a direct effect on tumor cells.

To verify whether NGR-TNF administration can induce the upregulation of adhesion molecules also on ECs of tumor vessels, we exploited the well-characterized (23) and well-vascularized (32) B16-OVA model. Therefore, mice bearing well-established s.c. B16-OVA melanoma (i.e., 126.3 ± 8.6 mm² ± SEM; n = 17) were infused i.v. with in vitro-activated OVA-specific OTI cells to follow a sizeable population of tumor-reactive T cells. Two days later NGR-TNF, TNF, or PBS was injected i.p. Based on previous reports of the most effective combination between NGR-TNF and chemotherapy (15, 16), tumors were excised after an additional 2 h and processed to study VCAM-1 and ICAM-2 expression on CD31⁺ endothelial cells, or they were homogenized and analyzed for the presence of soluble cytokines. NGR-TNF administration induced the upregulation of both VCAM-1 and ICAM-2 on CD31⁺ cells (Fig. 1E, 1F, respectively) and local release of several cytokines and chemokines (Fig. 1G). In particular MIP-2, MCP-1/CCL-2, MCP-3/CCL-7, oncostatin-M, and stem cell factor were significantly increased following NGR-TNF administration (Fig. 1G).

Having found that within 2 h NGR-TNF causes EC activation and local release of proinflammatory cytokines and chemokines, we investigated whether this might favor T cells infiltration into the tumor. Therefore, activated CFSE-labeled OTI cells were adoptively transferred into mice bearing a 12-d-old melanoma, and 2 d later mice (mean diameter 53.7 ± 7.3 mm² ± SEM, n = 15) were treated with NGR-TNF, TNF, or PBS. After an additional 2 h, mice were sacrificed and the tumors were collected and analyzed by flow cytometry. At that time, the tumor mass of NGR-TNF-treated mice was characterized by a consistent infiltrate of CD8⁺ cells localized in close proximity to the vessels or dispersed among tumor cells (Supplemental Fig. 1). CD8⁺ cells were less abundant in melanoma from PBS and TNF-treated mice (Supplemental Fig. 1). Quantification of TIL by flow cytometry confirmed that CFSE⁺ cells were much more abundant in NGR-TNF-treated mice than in PBS- or TNF-treated mice (Fig. 2A). Consistent with the notion that NGR-TNF specifically targets CD13⁺ neoangiogenic vessels (11, 12), CFSE⁺ cells were equally represented in the spleen, blood, and kidney of mice treated with PBS, NGR-TNF, or TNF (Fig. 2B–D).

TIL were also assessed for phenotype and effector functions. As expected for a population of activated TCR transgenic T cells, all OTI cells were CD8⁺CD44⁺ (data not shown). Of note, most CFSE-labeled OTI T cells in the tumor of mice treated with NGR-TNF also produced IFN-γ (Fig. 2E, 2F).

To investigate the persistence and effector function of migrating OTI cells in NGR-TNF-treated mice, some mice were sacrificed 24 h after treatment. As reported in Supplemental Fig. 2, the absolute numbers of tumor infiltrating CFSE⁺ (Supplemental Fig. 2A) and IFN-γ⁺ (Supplemental Fig. 2B) cells quantified at 2 and 24 h were similar, suggesting that tumor infiltration was a rather precarious and rapid event.

We also evaluated whether the phenomenon we observed in vivo with OTI cells occurred as well for nontransgenic T cells within a spontaneous cancer. We have recently reported that the infusion of alloreactive T cells overcomes tumor-specific T cell tolerance usually found in TRAMP mice (33) with autochthonous prostate cancer (20), allowing tumor debulking and increased overall survival (28). Therefore, 16-wk-old TRAMP mice were subjected to nonmyeloablative total body irradiation (600 rad) and 1 d later transplanted with 1 × 10⁶ bone marrow cells (HSCt) derived from congeneric female donors. Two weeks after the HSCt, mice received a DLI of 6 × 10⁶ splenocytes derived from congeneric females previously sensitized against male Ag (pDLI) (28). One day after the pDLI, mice were vaccinated with DC–Tag-IV, and 6 d later treated with either NGR-TNF or TNF (Fig. 3A). Immunohistochemical analyses conducted 2 h after the last treatment showed that the infusion of NGR-TNF favored infiltration of donor-derived CD3⁺ cells within the prostate tumors (Fig. 3B). Quantification of prostate tumor sections indicated that the number of CD3⁺ cells in prostate tumors was significantly higher in NGR-TNF-treated mice when compared with TNF-treated ones (Fig. 3C). Thus, targeting TNF to tumor vessel increases T cell infiltration of both transplantable and autochthonous tumors.

The combination of NGR-TNF and adoptive immunotherapy increases the survival of melanoma-bearing mice

Having found that activated OTI cells performed better when combined with NGR-TNF (Fig. 2), we wished to investigate whether adoptive immunotherapy and NGR-TNF act in synergy against a growing melanoma. Preliminary experiments were conducted to identify the number of OTI cells that as a single therapeutic agent exerted a measurable effect. Activated OTI cells were tested in mice bearing a 8-d-old melanoma (Fig. 4A). In a range between 1 and 6 × 10⁶ cells, the highest dose gave the best antitumor effect (Fig. 4B and data not shown).

Next, we tested the association between NGR-TNF treatment and adoptive transfer (Fig. 4A). Whereas TNF combined with 6 × 10⁶ OTI cells failed to significantly delay tumor growth and to prolong mouse survival (Fig. 4B, 4C), the administration of NGR-TNF prior to T cell infusion delayed tumor development and provided a survival advantage to tumor-bearing mice (Fig. 4B, 4C). These data indicate that NGR-TNF enhances tumor infiltration by CD8 T cells and the therapeutic potential of adoptive immunotherapy.
NGR-TNF promotes the efficacy and therapeutic activity of immunotherapy and chemoinmunotherapy

We next investigated whether NGR-TNF could also increase efficacy of active immunotherapy (vaccination) either alone or in combination with chemotherapy. To minimize the therapeutic efficacy of chemotherapy or NGR-TNF as single agents, treatment was started at day 14, when tumors had an average size of ~47 mm². Vaccination of mice bearing a B16-OVA melanoma was delivered by i.d. injection of DCs (26) pulsed with OVA257–264 and biweekly boosting. NGR-TNF was administered 1 wk after DC-OVA, based on the hypothesis that NGR-TNF favors tumor infiltration by activated CTL at the peak of the vaccine-induced immune response. As expected (23), DC-OVA only modestly prolonged survival of melanoma-bearing mice (Fig. 5A), but its combination with NGR-TNF significantly prolonged overall animal survival (Fig. 5A). Of note, ~50% of NGR-TNF-treated mice in combination with DC-OVA were still alive when control mice treated with DC-OVA alone or NGR-TNF alone had to be sacrificed because of tumor overgrowth (Fig. 5A).

Because immunotherapy in several instances could be combined with chemotherapy (34) and NGR-TNF has been shown to enhance tumor permeability to chemotherapeutic agents (15, 16), we next investigated the possibility that NGR-TNF administration might increase the therapeutic efficacy of chemoinmunotherapy. As a result, the DC-OVA vaccine was combined with DOXO given biweekly 2 h after NGR-TNF. The rationale was to boost the vaccine-induced immune response by causing chemotherapy-mediated tumor cell death and release of tumor-associated Ags. To establish the triple combined treatment, we started by associating NGR-TNF with DOXO. NGR-TNF, given alone (Fig. 5B) or provided 2 h before DOXO (Fig. 5B), was largely ineffective in this experimental setting, possibly because of the overt tumor growth. Likewise, the association of DC-OVA with DOXO increased mice survival (Fig. 5C), but to lower extents than those observed in mice receiving the combination of DC-OVA, NGR-TNF, and DOXO (Fig. 5D). Indeed, the triple combination further increased the overall survival of the mice (DC-OVA plus DOXO versus DC-OVA plus NGR-TNF plus DOXO; p < 0.0001). Delayed tumor growth in NGR-TNF–treated mice (Fig. 5D) correlated with a higher frequency of CD8⁺ TIL (Supplemental Fig. 3), and the former was comparable to that observed in mice receiving the combination of DC-OVA, NGR-TNF, and DOXO (Fig. 5D). Indeed, the triple combination further increased the overall survival of the mice (DC-OVA plus DOXO versus DC-OVA plus NGR-TNF plus DOXO; p < 0.0001). Delayed tumor growth in NGR-TNF–treated mice (Fig. 5D) correlated with a higher frequency of CD8⁺ TIL (Supplemental Fig. 3), and the former was comparable to that of mice receiving DC-OVA and DOXO (Fig. 5B), thus highlighting the importance of the NGR-vascular targeting moiety.

Finally, the combined therapeutic approach was investigated in the context of an immune response specific for TRP-2, a natural tumor-activated OTI cells (6 × 10⁶). Two days later, NGR-TNF (5 ng/kg; n = 3), TNF (5 ng/kg; n = 3) or PBS (None; 100 µl; n = 3) was injected i.p. After an additional 2 h, tumors were excised and processed to single-cell suspension for flow cytometric analysis after staining with anti-CD31, anti-VCAM-1, and anti-ICAM-2 mAb. Expression of VCAM-1 (E) and ICAM-2 (F) on live CD31⁺ cells are reported as mean (± SD) fluorescence intensity (MFI). Data are representative of three independent experiments. (G) Alternatively, the tumor tissue was homogenized and analyzed for the indicated soluble molecules by Mouse CytokineMAP B version 1.0. The graphs report the concentration of the indicated soluble molecules as a percentage of the concentration found in PBS-treated mice. Data from two independent experiments involving five to six animals per group were aggregated. Statistical analysis was performed using the Student t test: *0.01 < p < 0.05, **0.001 < p < 0.01, ***p < 0.001.

FIGURE 1. NGR-TNF treatment induces the upregulation of adhesion molecules on CD31⁺ cells and cytotoxic and chemokine release in the tumor microenvironment. HUVECs were detached with trypsin-EDTA, washed, and immediately incubated with TNF or NGR-TNF solutions at various concentrations for 1.5 h on ice. After washing, the cells were resuspended in culture medium, incubated for 16 h at 37°C, 5% CO₂, and analyzed by flow cytometry. (A) Fluorescence curves obtained with NGR-TNF, TNF, or no treatments. (B) Quantification of mean fluorescence intensity is reported. Data are representative of at least two independent experiments. (C) B16-OVA cells were stained with primary anti-mouse CD13 and secondary PE-conjugated anti-rat IgG2a (black histogram) or only with secondary PE-conjugated anti-rat IgG2a Ab (white histogram). (D) B16-OVA cells were incubated with TNF or NGR-TNF solutions at 10 ng/ml in DMEM complete medium containing 2 µg/ml actinomycin D (200 µl/well, 96-well plate). After 20 h at 37°C, 5% CO₂, cell viability was quantified by standard MTT assay. (E–G) Mice were challenged s.c. with B16-OVA cells, and 19 d later they were infused i.v. with...
associated Ag (23). B16 melanoma-bearing mice were sublethally irradiated and infused with splenocytes from TRP-2–sensitized C57BL/6 mice. Seven days later, the mice were vaccinated with TRP-2180–188–pulsed DC and boosted biweekly. NGR-TNF or TNF along with DOXO were provided 1 wk after each immunization. As shown in Supplemental Fig. 4, the survival of NGR-TNF–treated mice was significantly prolonged compared with that of TNF-treated mice.

The results of in vivo studies indicate that vascular targeting of TNF is able to act in synergy with active or adoptive immunotherapy or chemotherapy, or both, against cancer.

Discussion

The results show that treatment of tumor-bearing mice with extremely low doses of NGR-TNF (5 ng/kg) is associated with a substantial modification of the cytokine-chemokine milieu of the tumor microenvironment and reverts EC anergy. These rapid and transient modifications favor the selective recruitment within the tumor mass, of fully activated endogenous or adoptively transferred CTL. Indeed, 2 h after NGR-TNF treatment, tumor-specific IFN-γ–producing CD8+ T cells were already found to accumulate in the tumor mass, but not in the blood, spleen, or kidney of tumor-bearing mice. Remarkably, whereas the duration of the measured direct effects of NGR-TNF were short, the beneficial effects induced by NGR-TNF on TIL appeared to last for days. As a direct consequence, the therapeutic efficacy of both active and adoptive immunotherapies were significantly increased. Indeed, NGR-TNF treatment synergized with a DC-based vaccine given alone or in combination with DOXO, and in the context of two models of adoptive immunotherapy. While efficacious, the proposed combined therapies did not cause complete tumor regression, and the mice eventually succumbed to the tumor. Especially in the context of adoptive immunotherapy, the addition of exogenous cytokines, such as IL-2 and IL-15, or preconditioning of the

FIGURE 2. NGR-TNF treatment is associated with increased melanoma infiltration by fully functional CD8+ T cells. Mice were challenged s.c. with B16-OVA cells, and 12 d later they were infused i.v. with activated and CFSE+–labeled OTI cells (3 × 10^7). After an additional 2 d, animals were treated with PBS (n = 5); NGR-TNF (n = 5), or TNF (n = 5) as described in Fig. 1, and 2 h later single-cell suspensions of (A) tumor, (B) spleen, (C) blood, and (D) kidney were analyzed by flow cytometry after staining with CD8 mAb. Dead cells were excluded by physical parameters. Data are reported as a percentage ± SD of CFSE+ cells within the CD8+ cells. (E) Representative plots of TIL (gated on CD8+ cells) for each experimental condition. Numbers refer to the percentage of cells in each quadrant. (F) Quantification of CFSE+IFN-γ+ TIL (gated on CD8+ cells). Statistical analysis was performed using the Student t test. Data are representative of at least three independent experiments.

FIGURE 3. NGR-TNF treatment increases the infiltration of TIL into the prostate of TRAMP mice. Sixteen-week-old TRAMP mice were subjected to nonmyeloablative total body irradiation (600 rad) and 1 d later were transplanted with 1 × 10^7 bone marrow cells derived from congenic female donors. Two weeks after the transplant, mice received a DLI of 6 × 10^7 splenocytes derived from congenic females previously sensitized against male Ag. One day after the pDLI, mice were vaccinated with DC-Tag-IV. After 6 d, mice were treated with either NGR-TNF (n = 6) or TNF (n = 6) and killed 2 h later. See Materials and Methods for further experimental details. (A) A schematic representation of the treatment schedule. (B) Paraffin-embedded sections of UGA were analyzed by immunohistochemistry with anti-CD3 (Novared chromogen; original magnification ×40). (C) The number of CD3+ cells/mm² obtained by the blind analysis of the entire prostate of several individual mice is shown. Data were aggregated from two independent experiments involving three animals per group.
recipient to favor proliferation of the transferred T cells would likely synergize with NGR-TNF based strategies (5). Further study is warranted to specifically address this issue.

The results of the studies on the mechanism of action show that a comparable dose of TNF was marginally or not active, thereby suggesting the hypothesis of an NGR-mediated targeting mechanism. One may wonder whether a targeting mechanism is indeed necessary for the local activity of TNF, or whether high-dose TNF can induce effects similar to those induced by low-dose (0.1 ng) NGR-TNF. We have shown previously that injection of 1–10 ng, but not 0.1 ng, of TNF or NGR-TNF to mice induces the shedding of soluble TNF receptors in circulation, a counterregulatory mechanism that inhibits most of TNF activity (15). Therefore, nanogram doses of both TNF and NGR-TNF (e.g., 10 ng) are almost inactive in murine models (15). Microgram doses of TNF can overcome the counterregulatory mechanisms, but also lead to toxic reactions (15). These data suggest that targeted delivery of low-dose NGR-TNF to tumor vessels is necessary and sufficient to induce local effects without inducing systemic counterregulatory mechanisms or toxic reactions. Given that NGR peptides recognize a CD13 isoform expressed by tumor vessels, this finding points to a vascular targeting mechanism. However, other cells in the tumor may express CD13, such as fibroblasts and pericytes; therefore, we cannot exclude that these cells also contribute to promote changes in the tumor microenvironment. We can also hypothesize a direct effect of the NGR–CD13 interaction on endothelial cells, which has not been investigated.

Remarkably, picogram doses of NGR-TNF caused a rapid upregulation of adhesion molecules on tumor ECs and local release of MCP-1/CCL-2, MCP-3/CCL-7, and MIP-2. MCP-1/CCL-2 is mainly produced by monocytes/macrophages, often together with MCP-3/CCL7, and also by endothelial cells, fibroblasts, and epithelial and smooth muscle cells. These chemokines regulate migration of monocytes, DCs, NK cells, and activated T cells (35, 36). MCP-1 has also a relevant role in the generation and survival of memory CD8+ T cells and in the migration and function of adoptively transferred T cells, the latter function being impaired in MCP-1−/− mice (37). MIP-2 is mainly released from activated macrophages (38) and favors polymorphonuclear leukocyte recruitment. In addition, MIP-1β, RANTES, and lymphotactin were found to be upregulated, although not to a statistical significant level, in the tumor of NGR-TNF treated mice. These are generally cosecreted with IFN-γ by activated CD8+ T cells (39) and are involved in T cell movements within the inflamed tissue and as chemoattractants and coactivators of macrophages (40). Therefore, it is likely that their redundant effects on lymphocyte migration acted in synergy on TIL after NGR-TNF treatment.

Considering that several of the adhesion molecules and chemokines induced by NGR-TNF in the tumor microenvironment can be exploited by different leukocyte populations for their extravasation (31), it is likely that other leukocyte populations are attracted within the tumor mass, as a consequence of NGR-TNF treatment, and participate in the modification of the tumor microenvironment, making it more favorable for lymphocyte infiltration and effector functions. These mechanisms might explain the improved response observed when immunotherapy was combined with NGR-TNF. An additional mechanism for this synergy could reside in the ability of TNF to activate DCs and to support chemoimmunotherapy combination, as we have previously documented that NGR-TNF can promote the penetration of chemotherapeutic drugs in tumors (14, 16). Finally, NGR-TNF treatment can also transiently reduce hypoxic areas of lymphomas (41) and favor TIL proliferation and survival. Thus, NGR-TNF can exert multiple effects in tumors, all potentially cooper-

FIGURE 4. Adoptive immunotherapy combined with vascular targeting increases the survival of melanoma-bearing mice. (A) Schematic representation of the experiment. Mice bearing an 8-d-old B16-OVA melanoma were randomly assigned to either one of the following treatments (10 per group): PBS, NGR-TNF, or TNF followed 2 h later by activated OTI cells as described in Fig. 1. The same treatment was repeated 7 d later. Tumor growth was monitored twice per week for individual mice, and mice were killed when the mean tumor diameter was ≥10 mm or when the tumor became ulcerated. (B) Average tumor area (±SE) for each experimental group. Statistic analyses were performed at day 21 using the Student t test: PBS/OTI versus TNF/OTI, p = 0.3; PBS/OTI versus NGR-TNF/OTI, p = 0.0318; TNF/OTI versus NGR-TNF/OTI, p = 0.0052. The Student t test followed by Wilcoxon posttest was implemented for the comparison between NGR-TNF/OTI and TNF/OTI curves, *p < 0.05. (C) Survival curves are reported in a Kaplan–Meier plot. Log rank tests: PBS/OTI versus TNF/OTI, p = 0.18; PBS/OTI versus NGR-TNF/OTI, p < 0.0001; TNF/OTI versus NGR-TNF/OTI, p = 0.0002.
ating in the synergism with chemoimmunotherapy. Further study is necessary to assess what is predominant.

NGR-TNF is the first TNF derivative to be developed for its delivery to tumors and has shown antitumor efficacy in cancer patients (18, 19). In addition to NGR-TNF, other tumor vessel-homing derivatives of TNF could be exploited, in principle, for the same purpose. For example, TNF-fusion proteins with ACDCRGDCFCG or CisoDGRC peptides (both ligands of αv integrins) (42, 43), or with the single chain Fv Ab L19, directed against the extradomain B of fibronectin (44), might serve for the same purpose, because they also recognize target molecules that are expressed by the tumor neovasculature. However, given that the location of the target molecules in tumor vessels and their level of expression are different from that of CD13 (the NGR receptor), further study is necessary to assess this hypothesis.

Lymphocyte infiltration in tumors can also be favored by the use of antiangiogenic compounds, such as anti-VEGF Abs (7, 45–47) that are also able to inhibit the formation of new blood vessels and promote vascular normalization (48). From a conceptual point of view, these strategies are different from that proposed in the current study, which exploits NGR-TNF as an inflammatory-vascular targeting agent that induces vascular activation. Notably, the use of antiangiogenic compounds requires higher doses of drugs and more frequent administration, possibly inducing greater toxic reactions. The observation that extremely low doses of NGR-TNF are sufficient to induce local tumor effects with no signs of systemic toxicity makes NGR-TNF a more attractive agent for its combination with immunotherapy and chemoimmunotherapy. In this regard, it is remarkable that most of the effects induced by NGR-TNF on the vessels of murine tumors (14–16) have been observed also in patients (18, 19). Therefore, association of NGR-TNF with current active and adoptive immunotherapies and chemoimmunotherapies appears to be a safe and efficacious strategy. This combination should concomitantly alter tumor vessel permeability and favor chemotherapeutic drug and leukocyte penetration, tumor cell death, inflammation, and tumor Ag cross presentation in peripheral lymphoid organs and at the tumor site. Furthermore, NGR-TNF might transiently decrease intratumoral hypoxia, rendering the tumor more susceptible to chemotherapy and immune-mediated attack. Our findings identify a novel property of NGR-TNF and could be relevant for the design of novel immunotherapeutic approaches for cancer patients.

Acknowledgments

We thank M.P. Protti and V. Russo (Istituto Scientifico San Raffaele, Milan, Italy) for helpful discussion and critical reading of the manuscript.

FIGURE 5. The combination of active immunotherapy, vascular targeting, and chemotherapy acts in synergy against melanoma. Mice bearing a palpable 8-d-old B16-OVA melanoma (5–21 per group) were randomly assigned to the following combined treatments: i.d. injection of DC-OVA (5 × 10^5 cells/mouse), i.p. injection of TNF or NGR-TNF (5 ng/kg), or i.p. injection of DOXO (4 mg/kg). As control, mice received i.d. or i.p. injections, or both, of PBS (100 µl/mouse). A schematic representation of the treatment schedule is reported at the top of each panel. Tumor growth was monitored twice per week for individual mice, and mice were killed when the mean tumor diameter was ≥15 mm or when the tumor became ulcerated. (A–D) Survival curves are reported in Kaplan–Meier plots. Log-rank tests: (A) PBS versus NGR-TNF, p = 0.3; PBS versus DC-OVA, p = 0.009; PBS versus DC-OVA plus NGR-TNF, p < 0.0001; DC-OVA versus DC-OVA plus NGR-TNF, p = 0.002; NGR-TNF versus DC-OVA, p = 0.08; NGR-TNF versus DC-OVA plus NGR-TNF, p < 0.0001; (B) PBS versus NGR-TNF plus DOXO, p = 0.15; (C) PBS versus DOXO, p = 0.002; PBS versus DC-OVA plus DOXO, p < 0.0001; DC-OVA versus DC-OVA plus DOXO, p = 0.001; DOXO versus DC-OVA, p = 0.81; DOXO versus DC-OVA plus DOXO, p < 0.0001; DC-OVA versus DC-OVA plus DOXO, p = 0.001; PBS versus DC-OVA plus NGR-TNF plus DOXO, p < 0.0001; PBS versus DC-OVA plus TNF plus DOXO, p < 0.0001; DC-OVA plus TNF plus DOXO versus DC-OVA plus NGR-TNF plus DOXO, p < 0.0001.
Disclosures
A. Corti is the inventor of a patent on NGR-TNF. The other authors have no financial conflicts of interest.

References
Legends for supplemental figures

Supplemental Figure 1. NGR-TNF favors tumor infiltration by CD8⁺ T cells. Mice were challenged s.c. with B16-OVA cells, and 12 days later they were infused i.v. with activated OTI cells (OTI; 3 x 10⁷). After 2 additional days, animals were treated with PBS; NGR-TNF or TNF as described in the legend to Fig. 1, and 2 h later tumors were excised and frozen for immunofluorescence analysis. The panels depict melanoma sections at immunofluorescence. Green: CD8⁺ cells; red: CD31⁺ cells, and DAPI: cell nuclei.

Supplemental Figure 2. Effects of NGR-TNF on TIL at different time points. Mice were challenged s.c. with B16-OVA cells, and 12 days later they were infused i.v. with activated and CFSE⁺ labeled OTI cells (3 x 10⁷). After one additional day, animals were treated with NGR-TNF as described in the legend to Fig. 1, and 24 h later the number (A) and effector function (B) of CFSE⁺ TIL were quantified by flow cytometry as described in the legend to Fig. 2. Alternatively, NGR-TNF was administered 2 day after adoptive transfer of OTI cells, and TIL were analyzed 2 h later (2h). Data are reported as (A) absolute numbers ± SD of CFSE⁺ cells/g within the CD8⁺ cells. (B) Quantification of CFSE⁺IFN-γ⁺ TIL (gated on CD8⁺ cells). Statistical analysis was performed using the Student’s t-test.

Supplemental Figure 3. NGR-TNF favors tumor infiltration by CD8⁺ T cells. Mice were challenged s.c. with B16-OVA cells, and 7 days later they were treated as described in the legend to Fig. 5. (A) Schematic representation of the treatment schedule. Four days after the end of the first cycle of combined therapy mice were killed and TIL were analyzed by flow cytometry as detailed in the Material and Methods section. (B) Representative plots of TIL for each experimental condition. Numbers refer to the percentage of cells in each quadrant. (C) Percentage ± SD of CD8⁺ TIL within the gate of lymphocytes for each experimental condition. Statistical analysis was performed using the Student’s t-test.
Supplemental Figure 4. Adoptive immunotherapy combined with vascular targeting in the B16 melanoma model prolongs overall survival of mice. (A) Schematic representation of the experiment. C57BL/6 mice were challenged s.c. with B16 melanoma cells (5x10⁴), and 6 days later they were subjected to total body irradiation (TBI; 600 Rad). After an additional day, mice were adoptively transferred with splenocytes (AT; 6 x 10⁷/mouse) from syngenic mice previously sensitized against TRP-2 antigen. One week after the AT, mice were randomly assigned to either one of the following treatments (5/group): weekly i.p. injection of PBS (black circles); biweekly i.d. injection of DC-TRP-2 (5 x 10⁵/mouse) either alone (open squares), or alternated by biweekly i.p. injection of TNF (5 ng/Kg) followed 2 h later by DOXO (4 mg/Kg; black squares); or biweekly DC-OVA injections alternated by biweekly NGR-TNF (5 ng/Kg) and DOXO treatments (open circles). In addition, one group of mice received only TBI and AT (black triangles), and other mice were treated with TBI followed by DC-TRP2 and the combination of NGR-TNF and DOXO (open diamond). Tumor growth was monitored twice a week for individual mice, and mice were killed when the mean tumor diameter was ≥ 15 mm or when the tumor became ulcerated. (B) Survival curves are reported in a Kaplan-Meyer plot. Log-rank test: TBI vs TBI+AT: p = 0.007; TBI vs TBI+DC-TRP-2+NGR-TNF+DOXO: p = 0.03; TBI vs TBI+AT+DC-TRP-2+NGR-TNF+DOXO: p = 0.0015; TBI vs TBI+AT+DC-TRP-2+TNF+DOXO: p = 0.019; TBI+AT vs TBI+AT+DC-TRP-2+NGR-TNF+DOXO: p = 0.0018; TBI+DC-TRP-2 vs TBI+AT+DC-TRP-2+NGR-TNF+DOXO: p = 0.0027. TBI+DC-TRP-2+NGR-TNF+DOXO vs TBI+AT+DC-TRP-2+NGR-TNF+DOXO: p = 0.004. TBI+AT+DC-TRP-2+NGR-TNF+DOXO vs TBI+AT+DC-TRP-2+TNF+DOXO: p = 0.0072.
Calcinotto et al. Suppl. Figure 1

PBS

NGR-TNF

TNF

Green: CD8
Red: CD31
Blue: DAPI
Calcinotto et al. Suppl. Figure 2

A

Number of CFSE+ cells/g

B

Number of CFSE+ IFN-γ cells/g

2h 24h

0 1500 3000 5000 2500
Calcinotto et al. Suppl. Figure 3

A

B16-OVA DC-OVA DOXO Killing

0 7 14 18 days

B

DC+PBS+PBS DC+NGR-TNF+DOXO DC+TNF+DOXO

C

% CD8+ cells

DC PBS NGR-TNF TNF DOXO DOXO
Calcinotto et al. Suppl. Figure 4

A

Day since tumor challenge

B

Survival (%)