The Purinergic G Protein-Coupled Receptor 6 Inhibits Effector T Cell Activation in Allergic Pulmonary Inflammation

Giorgio Giannattasio, Shin Ohta, Joshua R. Boyce, Wei Xing, Barbara Balestrieri and Joshua A. Boyce

J Immunol 2011; 187:1486-1495; Prepublished online 1 July 2011; doi: 10.4049/jimmunol.1003669

http://www.jimmunol.org/content/187/3/1486

Supplementary Material

http://www.jimmunol.org/content/suppl/2011/07/05/jimmunol.1003669.DC1

References

This article cites 50 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/187/3/1486.full#ref-list-1

Why *The JI*? Submit online.

- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
The Purinergic G Protein-Coupled Receptor 6 Inhibits Effector T Cell Activation in Allergic Pulmonary Inflammation

Giorgio Giannattasio, Shin Ohta, Joshua R. Boyce, Wei Xing, Barbara Balestrieri, and Joshua A. Boyce

We show that the P2Y6 receptor, a purinergic G protein-coupled receptor with a high affinity for the nucleotide uridine diphosphate, is an important endogenous inhibitor of T cell function in allergic pulmonary inflammation. Mice conditionally deficient in P2Y6 receptors (p2ry6floxflox;cre/+ mice) exhibited severe airway and tissue pathology relative to P2Y6-sufficient p2ry6floxflox/+ mice when treated intranasally with an extract of the dust mite Dermatophagoides farinae (Df). P2Y6 receptors were inducibly expressed by lung, lymph node, and splenic CD4+ and CD8+ T cells of Df-treated +/- mice. Df-reconstituted P2Y6-deficient lymph node cells produced higher levels of Th1 and Th2 cytokines, and polyclonally stimulated P2Y6-deficient CD4+ T cells proliferated faster than comparably stimulated P2Y6-sufficient cells. The absence of P2Y6 receptors on CD4+ cells, but not APCs, was sufficient to amplify cytokine generation. Thus, P2Y6 receptors protect the lung against exuberant allergen-induced pulmonary inflammation by inhibiting the activation of effector T cells. The Journal of Immunology, 2011, 187: 1486–1495.

Nucleotides, the structural subunits of the nucleic acids, are also important extracellular signaling molecules (1, 2). They are stored in cytosolic and secretory compartments of cells and are released in response to cell injury, hypoxia, shear stress, and tissue injury (3–5). Nucleotides are also released by platelets, endothelial cells, mast cells (MCs), macrophages, and T cells in response to physiologic activation (6–9). Consequently, extracellular nucleotides accumulate at sites of vascular injury, hypoxia, thrombosis, inflammation, and immune cell activation. Both adenine-containing (ATP and ADP) and uracil-containing (UTP and UDP) nucleotides have extracellular functions mediated by cognate cell surface receptors. These receptors fall into two classes: purinergic (P2X) receptors, which are ligand-gated ion channels that mediate calcium and potassium fluxes in response to ATP, and P2Y receptors, which are G protein-coupled receptors (10–12). Although adenine nucleotides and their receptors play established roles in platelet aggregation (13), pain perception (14), and cellular responses to hypoxic injury (15), the functions of many P2Y receptors in vivo remain unknown.

P2Y6 receptors are the only known high-affinity receptors selective for UDP. They are expressed on both hematopoietic (macrophages, dendritic cells, MCs, and T cells) and nonhematopoietic (vascular smooth muscle, epithelium, and endothelium) cell types (16–25). Most functions attributed to P2Y6 receptors in vitro suggest a role in modulating cellular responses to inflammation through autocrine or paracrine actions of uracil nucleotides. Endogenous uracil nucleotides amplify airway epithelial chemokine production in response to neutrophil-derived peptides through P2Y6 receptors in vitro (26). P2Y6 receptors are strongly expressed by colonic epithelial cells in biopsies from patients with inflammatory bowel disease and mediate production of IL-8 by colonic epithelial cell lines in vitro (19). P2Y6 receptors amplify chemokine generation by a LPS-stimulated monocytic cell line (27), amplify endothelial cell activation in response to LPS (28), and enhance the release of macrophage inflammatory protein-1β by human MCs stimulated with leukotriene D4 (20). Human T cells express P2Y6 receptors after activation in vitro and at sites of inflammation in vivo (23), and pharmacologic blockade of P2Y6 receptors inhibits proliferation, CD25 expression, and generation of cytokines by mouse T cells in response to polyclonal and Ag-specific stimulation (9, 25). Although these in vitro studies suggest physiologic functions for P2Y6 receptors in immune responses and inflammation, not all such functions have been demonstrated in vivo.

Given its distribution on cells of both the innate and adaptive immune systems, we suspected that P2Y6 receptors might play a role in the pathogenesis of allergic pulmonary inflammation. In this study, we demonstrate that P2Y6 receptors are endogenous suppressors of T cell-driven pulmonary pathology induced by exposure to the allergens of the house dust mite Dermatophagoides farinae, which are potent sensitizers in asthma. Newly created C57BL/6 (B6) mice bearing a conditional deletion of the P2Y6 receptor [p2ry6floxflox;cre/+ mice] displayed sharply

The online version of this article contains supplemental material.

Abbreviations used in this article: B6, C57BL/6; BAC, bacterial artificial chromosome; BAL, bronchoalveolar lavage; BVBB, bronchovascular bundle; Df, extract from Dermatophagoides farinae; MC, mast cell; PZ, purinergic; PAS, periodic acid–Schiff; PLN, parabronchial lymph node; P2Y, purinergic G protein-coupled receptor; qPCR, quantitative PCR.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/S16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1003669
increased pulmonary inflammation, lymph node hyperplasia, and allergen-sufficient Th1 and Th2 recall responses compared with P2Y6-sufficient littermate controls [p2ry6 (floxed/floxed); +/+ (flox/flox) mice] when exposed intranasally to an extract of D. farinace (Df). P2Y6 receptors were constitutively expressed at low levels by alveolar and lung interstitial macrophages but absent on splenic and parabronchial lymph node (PLN) T cells from naive mice. However, P2Y6 receptor expression was induced on both CD4+ and CD8+ T cells from PLNs of +/+ and p2ry6 and cytokine production, dampening the inflammatory response to

Histological evaluation of pulmonary inflammation

Left lungs were harvested at the time of euthanasia, fixed, and embedded in glycolmethacrylate or in paraffin (32). Two-micrometer-thick glycolmethacrylate sections were stained with H&E or by the periodic acid-Schiff (PAS) reaction to depict mucus-secreting epithelial cells (goblet cells). The extent of cellular infiltration in the bronchovascular bundles (BVBs) and the number of PAS-positive goblet cells were evaluated from each animal in the experimental groups by a pathologist blind to mouse strain and procedure.

Real-time quantitative PCR of mRNA transcripts in the lung and PLNs

Right lungs were collected at time of euthanasia and snap-frozen. Freshly isolated PLN cells were pooled from five to seven mice per group. Total RNA was isolated from tissue homogenates and from PLN cells with Tri-Reagent (Sigma-Aldrich), reverse transcribed into cDNA (RT–First Strand kit; SABiosciences, Frederick, MD), and assayed by real-time quantitative PCR (qPCR) for mouse P2Y6, IL-5, IL-13, the mucus-associated proteins Muc5ac and Clec3-Gob-5, the transcription factors T-bet, GATA-3, Foxp3, and ROR-γt, the chemokines CCL2, CCL11, and CXCL2, and GAPDH on an Mx3005P thermal cycler (Stratagene) with the use of SYBRGreen/ROX master mix (SABiosciences). The ratio of each mRNA relative to the GAPDH mRNA was calculated with the ΔΔCt method. The primers used for expression genes P2Y6, Muc5ac, Clec3-Gob-5, and GAPDH were reported previously (31). For the transcription factors, the fold induction was calculated based on the ratio of corrected expression in the samples from Df-treated mice and from saline-treated controls.

Immunohistochemical analysis of P2Y6 in lungs, PLNs and spleen

Sections of paraffin-embedded lungs, PLNs and spleens were deparaffinized and rehydrated. Ag retrieval was performed with Target Retrieval Solution (DakoCytomation, Glostrup, Denmark) at 97 C for 30 min. After blocking with 10% chicken serum (Santa Cruz Biotechnology, Santa Cruz, CA), sections were incubated (1 h, 37 C) with 43g/ml with 4% mouse antiserum (from Quilalaia sapiaron) (Sigma-Aldrich) and blocked in FCS buffer containing 1% mouse antiserum and 1% anti-mouse CD16/CD32 (Mouse BD Fc Block; BD Biosciences, San Jose, CA). Cells were washed and incubated (45 min, 4˚C) with the following Abs: allophycocyanin-CD4 (clone RM4-5), allophycocyanin-PE-Cy7-CD11c (N418), PerCP-Cy5.5-B220 (RA3-6B2), and mouse anti-Thy1.2 (clone 30-H12; BD Biosciences). CD8b (H35-17.2), PE-Cy7-CD11c (N418), PerCP-Cy5.5-B220 (RA3-6B2) (eBioscience), and Alexa Fluor 488-labeled normal rabbit IgG (Jackson ImmunoResearch Laboratories) were used as controls. Annexin V staining was performed as previously described (33) on the CD4+ gate. The acquisition was performed with a FACSCanto flow cytometer with FACSDiva software (BD Biosciences), and data were analyzed with FlowJo (Tree Star, Ashland, OR).

In vitro restimulation of lymph node cells with Df

PLNs were collected from the upper-right chest of each mouse and homogenized in complete medium (RPMI 1640 medium, 10% FBS, 1% nonessential amino acids, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/ml streptomycin, 50 μg/ml gentamycin, Sigma-Aldrich), plus 25 mM HEPEs, and 1 mM sodium pyruvate. The red cells were lysed, and 4 x 10^5 nucleated cells were incubated for 72 h with medium alone or containing 20 μg/ml

Materials and Methods

Mice

A 12.7-kb region of the p2ry6 gene was subcloned from a B6 bacterial artificial chromosome (BAC) clone using homologous recombination. A single loxP site was inserted at the 5’ side of exon 3 and a Neo cassette flanked by FRT sites and loxP sites was inserted at the 3’ of exon 3. The region of the targeting vector was designed such that the long (LA) and the short (SA) homology arms extended 9.6 kb at the 3’ side and 2.1 kb at the 3’ of the cassette, respectively. The structure of the targeting vector was confirmed by restriction analysis after each modification step and by sequencing using primers designed to read from the selection cassette into the 3’ of the LA (N7) and the 5’ end of the SA (N1) and primers annealing to the vector sequence (P6 and T7) and reading into the 5’ and 3’ ends of the BAC subclone. The BAC was subcloned into a 2.4-kb subclone vector containing an ampicillin cassette for retrotransformation of the construct prior to electroporation. The resultant targeting vector was linearized and electroporated into 129Sv mouse embryonic stem cells, and cells were positively selected with G418. Six verified embryonic stem clones were microinjected into blastocysts from B6 mice, and chimeric mice were obtained and crossed with B6 mice to produce male and female p2ry6 (floxed/floxed) mice. To generate p2ry6 (floxed/floxed) and p2ry6 (floxed/floxed;cre/+ mice were intracranially injected with 20 μl of a mixture of 1:4.5, v/v, ethanol/sunflower oil (1:4.5), by i.p. injections on 5 consecutive days (29). Cohorts of sex- and age-matched male and female p2ry6 (floxed/floxed;cre/+ mice were obtained and crossed with B6 mice to produce male and female p2ry6 (floxed/floxed;cre/+ mice. To generate p2y6 (floxed/floxed) and p2y6 (floxed/floxed;cre/+ mice were intracranially injected with 20 μl of a mixture of 1:4.5, v/v, ethanol/sunflower oil (1:4.5), by i.p. injections on 5 consecutive days (29).

Induction of pulmonary inflammation

Ten days after the administration of tamoxifen, pulmonary inflammation was induced in age-matched (17–13 wk)- and sex-matched (+/+ and p2ry6 (floxed/floxed;cre/+ mice by intranasal instillation of 5 μg Df (Greer Laboratories, Lenoir, NC) in 20 μl 0.9% NaCl containing <0.005 EU/ml endotoxin; Sigma-Aldrich) twice a week for 3 wk, as described previously (30, 31). In selected experiments, the amount of Df was lowered to 1 μg/dose. Control groups of +/+ and p2ry6 (floxed/floxed;cre/+ mice received 0.9% NaCl alone. The same protocol was used for the experiments with the cre/+ mice. Twenty-four hours after the last treatment, mice were euthanized by cardiac puncture, and bronchoalveolar lavage (BAL) was performed with three aliquots of 0.7 ml ice-cold PBS containing 10% FBS and 0.5 mM EDTA. BAL fluid cells were cytocentrifuged onto slides, stained with Diff-Quick (Fisher Diagnostic, Middleton, VA), and differentially counted as mononuclear cells (monocytes/macrophages and lymphocytes), neutrophils, or eosinophils, according to the standard hemocytological criteria.

Flow cytometry analysis of PLN cells

Pooled PLNs from NaCl- and Df-treated +/+ and p2ry6 (floxed/floxed;cre/+ mice were homogenized and red cells were lysed. The cells obtained were fixed, permeabilized by incubation in FACS buffer (PBS buffer containing 0.5% BSA [Sigma–Aldrich]) plus 0.1% saponin (from Quilalaia sapiaron; Sigma–Aldrich) and blocked in FACS buffer containing 10% normal mouse serum and 1% anti-mouse CD16/CD32 (Mouse BD Fc Block; BD Biosciences, San Jose, CA). Cells were washed and incubated (45 min, 4˚C) with the following Abs: allophycocyanin-CD4 (clone RM4-5), allophycocyanin-CY5.5 (H35-17.2), PE-Cy7-CD11c (N418), PerCP-Cy5.5-B220 (RA3-6B2) (eBioscience), and Alexa Fluor 488-labeled normal rabbit IgG (Jackson ImmunoResearch Laboratories) were used as controls. Annexin V staining was performed as previously described (33) on the CD4+ gate. The acquisition was performed on a FACS Canto flow cytometer with FACS Diva software (BD Biosciences), and data were analyzed with FlowJo (Tree Star, Ashland, OR).
Deletion of P2Y₆ receptors increases pulmonary inflammation induced by Df allergen

The p2ry6 allele was deleted by flanking the gene with P-lox sites (Fig. 1A). The p2ry6 (flox/flox);cre/+ mice and their +/- littermate controls (Fig. 1B) were treated with tamoxifen for 5 consecutive d i.p. PCR analysis confirmed the genotype of the mice used in the experiments (Fig. 1C). Immunohistochemistry confirmed the absence of the P2Y₆ receptor protein in the lungs, PLN, and spleen of the p2ry6 (flox/flox);cre/+ mice after tamoxifen treatment (Fig. 2). The initial experiments were performed with F1-F5 B6 × 129 mice and littermate controls. The results obtained in these experiments were similar to those obtained after backcrossing the mice for 10 generations to the B6 background (Fig. 3A).

To determine whether P2Y₆ receptors played a role in the development of allergic pulmonary inflammation, Df (3 μg protein) or saline was administered intranasally, twice weekly for 3 consecutive wk (25) to cohorts of +/- and p2ry6 (flox/flox);cre/+ mice after both genotypes were treated with tamoxifen. Df caused increased BAL fluid cell numbers, eosinophils, neutrophils, macrophages, and lymphocytes. However, the total number of cells in BAL fluid of the Df-treated p2ry6 (flox/flox);cre/+ mice exceed that of the +/- controls by >2-fold (Fig. 3A). Compared with the Df-treated +/- controls, the Df-treated p2ry6 (flox/flox);cre/+ mice showed ~5-fold higher numbers of BAL fluid eosinophils and neutrophils (Fig. 3A). Similar results were obtained after backcrossing the initial F1 mice to the B6 background for 10 generations (Fig. 3B). Tamoxifen-treated Cre/+ mice without the fluxed p2ry6 allele showed identical degrees of Df-induced inflammation, PLN cell counts, and PLN cytokine production to wild-type controls (Supplemental Fig. 1A–C, respectively), indicating that activation of Cre recombinase per se did not alter the phenotype.

Because the peribronchial inflammation caused by Df at 3 μg was too severe to show substantial differences between the genotypes (data not shown), we reduced the dose of Df to 1 μg in selected experiments to determine whether the deletion of P2Y₆ receptors altered pulmonary pathology at a lower dose of Ag. At this allergen dose, the BVBs of the p2ry6 (flox/flox);cre/+ mice contained more extensive inflammatory infiltrates consisting of mononuclear cells along with eosinophils, neutrophils, lymphocytes, and plasma cells than did the +/- controls (Fig. 3C). In addition, the bronchial epithelium of the p2ry6 (flox/flox);cre/+ mice demonstrated more goblet cell metaplasia than did the +/- controls (Fig. 3C). Higher levels of expression of IL-5 and IL-13 mRNA transcripts were present in the lungs of the Df-treated p2ry6 (flox/flox);cre/+ mice than in the lungs of the +/- mice, with similar trends for the goblet cell-associated transcripts Muc5ac and Cica3/Gob-5 (Fig. 3D). There were no significant differences in the levels of transcripts encoding CCL2 (a monocyte chemoattractant), CCL11 (an eosinophil chemoattractant), or CXCL1 (a neutrophil chemoattractant) (Supplemental Fig. 2) between the lungs of the genotypes.

Cellular distribution of P2Y₆ receptors in the lungs and lymphoid tissues

Because the deletion of P2Y₆ receptors resulted in increased pulmonary inflammation in response to Df, we sought to determine the cellular distribution of P2Y₆ receptors in the lungs and
associated secondary lymphoid organs of +/+ mice and whether this distribution and the level of receptor expression changed with inflammation. qPCR revealed low constitutive levels of P2Y6 receptor mRNA in the lungs of naive +/+ mice. These levels sharply increased in response to intranasal Df (Fig. 2A). Immunohistochemistry using a rabbit polyclonal anti-P2Y6 Ab (20) revealed that P2Y6 receptor protein localized predominantly to cells with the morphologic appearance of macrophages in the alveolar and interstitial spaces in saline-treated +/+ mice (Fig. 2B). Challenge of +/+ mice with Df induced the accumulation of mononuclear cells in the BALT of the BVBs, which stained strongly for P2Y6 receptor protein. On the basis of cell size and morphology, these cells appeared to be a mixture of lymphocytes and monocyte-like cells (Fig. 2B). There was negligible staining of the resident epithelial, endothelial, and smooth muscle cells and no significant staining of the infiltrating granulocytes.

Immunostaining of the spleen and PLNs from naive +/+ mice revealed negligible staining for P2Y6 receptor protein. In contrast, distinct populations of P2Y6 receptor-positive cells appeared in the paracortical zones of the spleen and PLNs from Df-treated +/+ mice (Fig. 2C) but not in the germinal centers. Neither the lung (Fig. 2B) nor the lymphoid tissues (Fig. 2C) of the saline- or Df-

FIGURE 2. Expression of P2Y6 receptors in the lungs, PLNs and spleen. A, qPCR analysis of P2Y6 receptor mRNA in the lungs of NaCl- and Df-treated +/+ (☐; n = 6 and 18, respectively) and p2ry6 (floxflo)cre/+ (●; n = 6 and 15) mice. B, Immunohistochemical analysis of P2Y6 receptors in the lungs from +/+ and p2ry6 (floxflo);cre/+ mice exposed to NaCl and Df intranasally. P2Y6 receptor protein, indicated by the brown staining, was detected on cells with the morphology consistent with macrophages in the alveolar and interstitial spaces in saline-treated +/+ mice (Fig. 2B). There was negligible staining of the resident epithelial, endothelial, and smooth muscle cells and no significant staining of the infiltrating granulocytes.

Immunostaining of the spleen and PLNs from naive +/+ mice revealed negligible staining for P2Y6 receptor protein. In contrast, distinct populations of P2Y6 receptor-positive cells appeared in the paracortical zones of the spleen and PLNs from Df-treated +/+ mice (Fig. 2C) but not in the germinal centers. Neither the lung (Fig. 2B) nor the lymphoid tissues (Fig. 2C) of the saline- or Df-

FIGURE 1. Generation of +/+ and p2ry6 (floxflo);cre/+ mice. A, The conditional gene-targeting vector was obtained from an ~12.7 kb B6 bacterial artificial chromosome subclone and contained an LA (9.6 kb), p2ry6 exons 2 and 3, the latter flanked at the 5′ side by a single loxP site and at the 3′ side by a PGK-neo cassette with loxP and FRT sites, and an SA (2.1 kb). The target region was ~1.8 kb and included exon 3. The annealing sites of the primers used to confirm the structure of the vector are indicated as P6, N7, N1, and T7. B, Schematic representation of the breeding protocol used to generate +/+ and p2ry6 (floxflo);cre/+ mice. p2ry6 (floxflo) mice on a B6 × 129 mixed background (dashed line) or on a B6 background (solid line) were initially mated with cre/cre mice to generate +/+ and p2ry6 (floxflo);cre/+ strains. C, PCR amplification products of the wild-type (p2ry6WT) and floxed (p2ry6flo) p2ry6 gene and of the Cre recombinase in B6 wild-type (lanes 3–5), p2ry6 (floxflo) (lanes 7–9), and p2ry6 (floxflo);cre/+ (lanes 11–13) mice resolved on a 2% agarose gel.
FIGURE 3. *Df*-induced pulmonary inflammation in NaCl- and *Df*-treated +/+ and p2ry6 (flox/flox);cre/+ mice. A, Total and differential cell counts from BAL fluid of NaCl- and *Df*-treated +/+ (\(n = 9\) and 23, respectively) and p2ry6 (flox/flox);cre/+ (\(n = 9\) and 18) mice at the F1 stage of breeding. B, Total and differential cell counts from BAL fluid of NaCl- and *Df*-treated C57BL/6 +/+ (\(n = 5\) and 19, respectively) and p2ry6 (flox/flox);cre/+ (\(n = 5\) and 20) mice at the N10 stage. C, Tissue sections of lung showing BVBs from NaCl- and *Df*-treated +/+ and p2ry6 (flox/flox);cre/+ mice were stained with H&E and PAS reaction for depicting mucus-secreting cells (PAS, original magnification \(\times 20\); arrows). Scale bars, 100 \(\mu\)m (original magnification \(\times 63\)). D, Expression of mRNA encoding cytokines and mucus-associated proteins in the lung tissue of NaCl- and *Df*-treated +/+ (\(n = 6\) and 18, respectively) and p2ry6 (flox/flox);cre/+ (\(n = 6\) and 15) mice, measured by qPCR. Data are expressed as ratio of the indicated mRNA expression relative to GAPDH. Values are mean ± SEM from four (A) and three (B) independent experiments. Photomicrographs in C are from one representative mouse per group from one of three independent experiments with similar results. Original magnifications \(\times 20\) and \(\times 63\).

treated p2ry6 (flox/flox);cre/+ mice exhibited staining for P2Y₆ receptor protein.

To identify the lymphoid cells expressing P2Y₆ receptors after treatment with *Df*, we performed flow cytometry using the rabbit anti-P2Y₆ Ab on the dispersed spleen cells from the +/+ mice. Abs against CD4, CD8, B220 (CD45R), and CD11c were used to identify helper and cytotoxic T cells, B cells, and APCs, respectively (Fig. 4A). No P2Y₆-expressing lymphoid cells were identified in the spleens from the naive +/+ mice (Fig. 4B). In contrast, both CD4⁺ and (to a lesser extent) CD8⁺ splenic T cells from the *Df*-treated +/+ mice showed modest staining for P2Y₆ (Fig. 4B). B220⁺ B cells did not express P2Y₆ receptors, whether derived from naive or *Df*-treated +/+ mice. There were too few CD11c⁺ cells to analyze, and no staining for P2Y₆ receptors was observed on any cell populations in the spleens from saline- or *Df*-treated p2ry6 (flox/flox);cre/+ mice (Fig. 4B). The percentages of CD4⁺, CD8⁺, and B220⁺ cells in the lymph nodes did not differ between the two strains (data not shown). Confocal imaging of CD4⁺ cells purified from the dispersed lungs of *Df*-treated wild-type mice confirmed prominent P2Y₆ receptor staining, which was not observed in lung T cells from saline-treated +/+ mice (Fig. 4C).

Effects of P2Y₆ receptors on the adaptive immune response to *Df*

To determine the role of P2Y₆ receptors on control of recall responses to the *Df* Ags in sensitized mice, we evaluated the production of proinflammatory and immunoregulatory cytokines from restimulated PLN cells from the *Df*-treated p2ry6 (flox/flox);cre/+ mice and +/+ controls. The PLNs from the *Df*-treated p2ry6 (flox/flox);cre/+ mice were consistently larger than those from the +/+ controls and contained more total cells (Fig. 5A). Equal numbers of PLN cells isolated from NaCl- and *Df*-treated +/+ and p2ry6 (flox/flox);cre/+ mice were cultured in vitro in either medium alone or containing *Df*. At the end of the culture, the concentrations of IL-2, IL-4, IL-5, IL-10, IL-13, IL-17A, and IFN-γ released in the supernatants were evaluated by ELISA. Restimulated PLN cells from *Df*-treated p2ry6 (flox/flox);cre/+ mice generated more IL-4, IL-5, IL-13, IL-17A, and IFN-γ than did cells from +/+ mice (Fig. 5B). The amounts of IL-2, IL-10, and IL-17A also tended to be higher but did not reach significance (\(p = 0.26, 0.15,\) and 0.12, respectively). The results obtained from the PLN cells from the N10 mice were similar (Supplemental Fig. 3), and restimulation of splenocytes yielded results similar to the PLN cells (data not shown). To determine whether the increased quantities of cytokines reflected increased numbers of cytokine-generating cells in the PLNs from *Df*-treated p2ry6 (flox/flox);cre/+ mice, we performed ELISPOT assays. Consistent with the ELISA data, the PLNs of *Df*-treated p2ry6 (flox/flox);cre/+ mice contained increased numbers of cells expressing IL-4, IL-5, and IL-13 protein than did the PLNs of the *Df*-treated +/+ controls (Fig. 5C). The differences in IFN-γ and IL-17A were not significant (\(p = 0.07\) and 0.10, respectively). Quantitative PCR analysis of the *Df*-treated PLN cells showed no differences between strains in the
induced expressions of the Th1-associated transcription factor T-bet, the Th2-associated transcription factor GATA-3 (the regulatory T cell-associated transcription factor Foxp3), and the Th17 transcription factor ROR-γt (Supplemental Fig. 4).

To determine whether the absence of P2Y6 receptors changed the rate of helper T cell proliferation, PLN cells were loaded with CFDA-SE before restimulation, and the dilution of the dye was measured cytofluorographically as an index of proliferation.
Because the CFDA-SE dilution signal in cultures of PLN cells restimulated with Df was below the limit of detection (data not shown), we performed the assay by using a T cell polyclonal stimulation with anti-CD3 and anti-CD28 Abs. Percentages of polyclonally stimulated proliferating CD4+ T cells were modestly but significantly higher in the PLNs of p2ry6 (floxed/floxed);cre/+ mice than in the PLNs of +/+ controls (Fig. 5D). Splenic CD4+ cells p2ry6 (floxed/floxed);cre/+ mice also displayed higher rates of proliferation in response to polyclonal stimulation than did +/+ control cells, and unlike the +/+ cells, exogenous UDP failed to suppress their proliferation (Fig. 5D). Percentages of apoptotic CD4 cells in the PLNs of the Df-treated p2ry6 (floxed/floxed);cre/+ mice were lower than in the PLNs from the +/+ controls (Supplemental Fig. 5). The p2ry6 (floxed/floxed);cre/+ mice exposed to Df showed higher levels of serum total IgE (Supplemental Fig. 6A), but they had comparable levels of Df-IgG1 (Supplemental Fig. 6B).

The absence of P2Y6 receptors on CD4+ T cells controls the recall response to Df-associated allergens

To determine whether the increased cytokine production from the restimulated PLNs reflected a direct suppressive effect of P2Y6 receptors expressed by T cells or an effect of P2Y6 receptor-dependent modulation of APC functions, we developed a coculture assay. Because mice with transgenic expression of Df-specific TCR are not yet available, we purified CD3+/CD4+ T cells from the spleens of NaCl- and Df-treated +/+ and p2ry6 (floxed/floxed);cre/+ mice and incubated them with enriched interstitial macrophages from the lungs of each genotype and treatment as a source of APCs. Nearly all of these cells had morphologic features of macrophages (Fig. 6A), with >85% expressing the pan-macrophage marker CD68 (Fig. 6B) (37). Fewer than 5% of the cells expressed T cell markers (CD3, CD4, and CD8), whereas B220 was expressed by ~15% of the CD68+ cells (data not shown). The proportions of the cells expressing the APC markers CD11c and MHC-II (~30% for each marker) did not differ between genotypes (Fig. 6B), and confocal imaging confirmed that the macrophages from the Df-treated +/+ mice exhibited substantially increased expression of P2Y6 protein relative to the saline-treated controls (Fig. 6C). After 72 h of coculture in the presence of Df, CD3+/CD4+ T cells from naive mice of both genotypes generated small and comparable amounts of IL-5 and IL-13 (Fig. 6, left panels). In contrast, CD3+/CD4+ T cells from Df-treated p2ry6 (floxed/floxed);cre/+ mice released more IL-5, IL-13, and IFN-γ than the cells from +/+ mice in all three experiments performed (as shown for one experiment; Fig. 6D, right panels).

There was no effect of the macrophage genotype, although macrophages from lungs of Df-treated mice supported higher levels of

FIGURE 6. Cytokine release from restimulated cocultures of CD4+ T cells and lung macrophages. A, Wrights and Giemsa stain showing enriched lung macrophages from Df-treated +/+ mice. B, Forward and side scatter characteristics (left panels), CD68/CD11c staining (middle panels), and MHC-II staining (right panels) of the enriched macrophages from the indicated strains used in the coculture assays. C, Confocal images of enriched lung APCs from the indicated NaCl- and Df-treated genotypes stained for P2Y6 immunofluorescence. Results were identical in a second experiment. D, Cytokine release from restimulated cocultures of CD4+ T cells and lung macrophages. Lung macrophages from NaCl- and Df-treated +/+ (unshaded) and p2ry6 (floxed/floxed);cre/+ (shaded) mice were cocultured with CD4+ T cells from +/+ (●) and p2ry6 (floxed/floxed);cre/+ (■) mice treated with NaCl (left panels) or Df (right panels). The results are from one experiment, which was repeated twice more with similar trends but with different magnitude of responses.
cytokine generation by CD4⁺ cells than did macrophages from the lungs of saline-treated controls (Fig. 6D).

Discussion

This study uncovers a prominent role for the UDP-selective P2Y₆ receptor in the control of pulmonary inflammation and cytokine generation in a model of allergic pulmonary inflammation. In our model, uracil nucleotides act at P2Y₆ receptors that are inducibly expressed by T cells to suppress the development of Df Ag-responsive T cells and production of pathogenic cytokines. In vitro studies indicate that UDP (acting presumably at P2Y₆ receptors) amplifies effector cytokine production by epithelium (21), endothelium (28), macrophages (27), and MCs (20). Although we cannot exclude important contributions from P2Y₆ receptors on these other cell types in our model, our study suggests that upregulation of P2Y₆ receptors on T cells and limiting T cell activation may be a dominant mechanism that limits the pathologic consequences of a pulmonary immune response, at least in response to a complex natural allergen.

Given the fact that multiple P2Y₆ receptor-expressing cell types can contribute to the pathophysiology of the immune and inflammatory response to natural allergens, we tested the effect of P2Y₆ receptor deletion in a model of intranasal Df challenge. Df contains glycans, proteases, and other stimuli that activate lung APCs and initiate a pathogenic T cell response with the generation of Th1, Th2, and Th17 cytokines and the development of characteristic pulmonary inflammation (38, 39). We generated a mouse with homozygous floxed p2ry6 alleles (Fig. 1A) that were disrupted by tamoxifen treatment after introducing a single copy of a tamoxifen-sensitive Cre recombinase allele (p2ry6 (floxFlox);cre/+) (Fig. 1B, 1C). These mice were fertile, healthy, and indistinguishable from littermate +/+ controls, similar to a previously reported conditional p2ry6⁻/⁻ mice (16). On the basis of the role for P2Y₆ receptors in amplifying cytokine production by immune cells in vitro, we anticipated that the deletion of this receptor might reduce inflammation in our model. We were surprised to find that the p2ry6 ⁻⁄ ⁻ mice exhibited increased inflammation after Df administration compared with the +/+ littermates, showing significantly increased total cell counts, increased eosinophil and neutrophil counts in the BAL fluid (Fig. 3A, 3B), as well as increased bronchovascular cellular infiltration and goblet cell metaplasia on histological analysis (Fig. 3C). The increases in goblet cell-associated transcripts in the lungs of p2ry6⁻/⁻ mice, which are characteristically controlled by the Th2 cytokine IL-13 (40–42), was paralleled by increased quantities of transcripts encoding IL-13, as well as IL-5, the major cytokine responsible for eosinophilia (Fig. 3D) (43, 44). Thus, the absence of P2Y₆ receptors increased the expression of pathogenic Th2 cytokines in the target tissue, leading to characteristic lung pathology.

Although cytokine generation in models of allergen-induced pulmonary disease requires T cell activation following the presentation of Ags by APCs (39), several additional cell types, including epithelial cells, modify cytokine generation by recognizing nonprotein components of dust mites (45–47). We determined the distribution of P2Y₆ receptor expression in resident lung cells in both naive and Df-treated mice. P2Y₆ receptor staining in the lungs of naive +/+ mice was restricted primarily to macrophages in both the alveolar and interstitial spaces of the lung (Fig. 2B). The sharply increased expression of P2Y₆ receptor transcript in the lungs of Df-treated +/+ mice (Fig. 2A) was paralleled by the appearance of monocytoid and lymphocytoid cells that strongly expressed P2Y₆ receptor protein and that localized to the BALT (Fig. 2B). In addition, staining of the regional lymph nodes and of the spleen suggested that Df treatment of +/+ mice induced a P2Y₆ receptor-expressing T cell population (Fig. 2C), and flow cytometry verified that PLN CD4⁺ cells (and, to a lesser extent, CD8⁺ cells) expressed P2Y₆ receptors after exposure in vivo to allergen (a pattern recapitulated by lung T cells; Fig. 4). The absence of P2Y₆ receptor expression on B220⁺ B cells is consistent with the lack of immunostaining of germinal centers (Fig. 2C). Because there were very few CD11c⁺ APCs in the PLNs, we were unable to determine whether they expressed P2Y₆ receptors, although macrophages enriched from the lung did express P2Y₆ receptors that were upregulated with Df treatment (Fig. 6C).

We next sought to determine the effects of P2Y₆ receptor deletion on the recall response to Df. The PLNs from the Df-treated p2ry6⁻/⁻ (floxFlox);cre/+ mice contained more total cells (Fig. 5A) than did the PLNs from the +/+ controls. Although the total percentages of T cells in the PLNs did not differ between the strains (data not shown), the restimulated PLN cells from the Df-treated p2ry6⁻/⁻ (floxFlox);cre/+ mice generated significantly higher amounts of Th2 and Th1 cytokines than did samples from the +/+ mice (Fig. 5B), paralleled by higher numbers of cytokine-producing T cells (Fig. 5C). Thus, the effect of P2Y₆ receptors on the control of Ag recall responses is not restricted to one lineage of effector T cell in this model. Moreover, the robust generation of IL-10 (Fig. 5B) by the samples from p2ry6⁻/⁻ (floxFlox);cre/+ mice and the trivial induction of mRNA encoding Foxp3 in PLN cells from +/+ and p2ry6⁻/⁻ (floxFlox);cre/+ mice following exposure to Df (Supplemental Fig. 4) suggest that the absence of P2Y₆ receptors does not selectively compromise regulatory T cell development as a mechanism for the phenotype observed. Thus, P2Y₆ receptors induced by Ag stimulation play a homeostatic role in the control of memory T cell activation during recall responses to Df Ags. Although the low frequencies of Df-responsive T cells (estimated at ~1 in 100 lymph node cells) precluded detection of proliferation in a recall response to Df, polyclonally stimulated CD4⁺ PLN T cells from p2ry6⁻/⁻ (floxFlox);cre/+ mice proliferated significantly faster than +/+ control cells did. The fact that exogenous UDP suppressed proliferation only in the CD4⁺ cells from +/+ controls (Fig. 5D) validates that P2Y₆ receptors account entirely for the UDP response of T cells in this model. It is possible that both enhanced proliferation and attenuated apoptosis contribute to the relative PLN hyperplasia of the p2ry6⁻/⁻ (floxFlox);cre/+ mice in this model. Proof of a homeostatic role for P2Y₆ in the control of Ag-induced proliferation awaits the creation of transgenic mice with TCRs specific for Df Ags.

In addition to intrinsic properties of the responder T cells, APC-specific factors strongly influence the magnitude and nature of Ag-induced recall responses (39). To test whether the outcome of the Df-induced recall response was influenced more strongly by P2Y₆ receptors expressed by APCs or by effector T cells, we purified P2Y₆ receptor-deficient or -sufficient splenic CD4⁺ T cells and cocultured these with either P2Y₆ receptor-deficient or -sufficient lung macrophages as a source of APCs (Fig. 6) (48). The induction of inflammation by Df causes APCs to mature and become more effective in processing and presenting Ag, likely explaining the ability of the CD4⁺ cells to produce higher level of cytokines when cocultured with APCs derived from Df-treated mice. The absence of P2Y₆ receptors did not affect the expression of activated APC markers CD11c and MHC-II (Fig. 6). Importantly, the macrophage genotype had no influence on the levels of cytokines generated by responder T cells. Although the absolute quantities of cytokines produced varied in the three experiments performed, CD4⁺ cells from the Df-treated p2ry6⁻/⁻ (floxFlox);cre/+ mice generated more IL-5, IL-13, and IFN-γ than did the CD4⁺ T cells from the +/+ controls in every experiment (as shown for one
experiment; Fig. 6D). Thus, at least at the effector phase of the Df-induced immune response, the absence of P2Y6 on Df-treated CD4+ cells is both necessary and sufficient to amplify the pro-inflammatory effects of adenine nucleotides in a similar context. Given the multitude of P2Y receptors that are expressed by cells of the immune system, it is critical to understand both the pro- and anti-inflammatory effects of uracil nucleotides in a similar context. Therefore, at least at the effector phase of the experimental protocol, our study demonstrates the first homeostatic role of P2Y6 receptors in allergic pulmonary inflammation.

Acknowledgments

We thank Chunli Feng for outstanding technical support.

Disclosures

The authors have no financial conflicts of interest.

References

