
Michael L. Dustin, Robert Rothlein, Atul K. Bhan, Charles A. Dinarello and Timothy A. Springer

J Immunol 2011; 186:5024-5033; http://www.jimmunol.org/content/186/9/5024.citation

Why The JI? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
INDUCTION BY IL 1 AND INTERFERON-γ: TISSUE DISTRIBUTION, BIOCHEMISTRY, AND FUNCTION OF A NATURAL ADHERENCE MOLECULE (ICAM-1)¹

MICHAEL L. DUSTIN,* ROBERT ROTHLEIN,* ATUL K. BHAN,* CHARLES A. DINARELLO,* AND TIMOTHY A. SPRINGER**

From the *Laboratory of Membrane Immunology, Dana-Farber Cancer Institute, Boston, MA; the *Committee on Cell and Developmental Biology, and the *Department of Pathology, Harvard Medical School, Boston, MA; the †Department of Pathology, Massachusetts General Hospital, Boston, MA; and the *Division of Experimental Medicine, Tufts University School of Medicine, Boston, MA

ICAM-1 is a cell surface glycoprotein originally defined by a monoclonal antibody (MAb) that inhibits phorbol ester-stimulated leukocyte aggregation. Staining of frozen sections and immunofluorescence flow cytometry showed intercellular adhesion molecule-1 (ICAM-1) is expressed on non-hematopoietic cells such as vascular endothelial cells, thymic epithelial cells, certain other epithelial cells, and fibroblasts, and on hematopoietic cells such as tissue macrophages, mitogen-stimulated T lymphocyte blasts, and germinal center dendritic cells in tonsils, lymph nodes, and Peyer's patches. ICAM-1 staining on vascular endothelial cells is most intense in T cell areas in lymph nodes and tonsils showing reactive hyperplasia. ICAM-1 is expressed in low amounts on peripheral blood leukocytes. Phorbol ester-stimulated differentiation of myelomonocytic cell lines greatly increases ICAM-1 expression. ICAM-1 expression on dermal fibroblasts is increased threefold to fivefold by either interleukin 1 (IL-1) or interferon-γ at 10 U/ml over a period of 4 or 10 hr, respectively. The induction is dependent on protein and mRNA synthesis and is reversible. ICAM-1 displays M₄ heterogeneity in different cell types with a M₄ of 97,000 on fibroblasts, 114,000 on the myelomonocytic cell line U937, and 90,000 on the B lymphoblastoid cell line JY. ICAM-1 biosynthesis involves a M₄ of 73,000 intracellular precursor. The non-N-glycosylated form resulting from tunicamycin treatment has a M₄ of 55,000. ICAM-1 isolated from phorbol myristic acetate (PMA)-stimulated U937 and from fibroblasts yields an identical major product of M₄ = 60,000 after chemical deglycosylation. ICAM-1 MAb interferes with the adhesion of phytohemagglutinin blasts, and the adhesion of the cell line SKW3 to human dermal fibroblast cell layers. Pretreatment of fibroblasts but not lymphocytes with ICAM-1 MAb, and of lymphocytes but not fibroblasts with lymphocyte function-associated antigen 1 MAb inhibits adhesion. \[\text{Received for publication January 30, 1986. Accepted for publication April 8, 1986.}

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. ¹

This work was supported by National Institutes of Health Grants AI5154, HL14664, CA31798 and Council for Tobacco Research grant 1307. Michael L. Dustin is the recipient of a National Science Foundation predoctoral fellowship. ²

Intercellular adhesion is increased by prior exposure of fibroblasts to IL 1, and correlates with induction of ICAM-1.

Immune responsiveness of T lymphocytes to antigens and several effector activities of leukocytes requires cell-cell contact and adhesion (1–3). Adhesion to both hematopoietic and non-hematopoietic cells is an obligate step in antigen presentation (4–7) and effector cell functions, such as cytolytic T lymphocyte-mediated killing (1). Molecules have been characterized that are involved in both antigen-specific and non-specific contributions to these adhesion processes (8–10). One antigen nonspecific adhesion molecule, the lymphocyte function-associated-1 (LFA-1) antigen, is thought to strengthen adhesion to cells bearing specific antigens, perhaps by binding to unidentified molecules on the antigen-presenting cell or target cell (11, 12), thereby increasing the range of avidities over which antigen-specific interactions can be effective (13). Alternatively, LFA-1 may regulate adhesion without itself engaging in ligand-receptor interactions (13). Understanding the molecular nature and regulation of these antigen nonspecific interactions is important for an understanding of adhesion interactions in the immune response, inflammation, and other aspects of leukocyte biology.

As a model for leukocyte adhesion we recently studied lymphocyte self-aggregation (14, 15). Lymphocytes stimulated with specific antigen or with phorbol esters become adherent and form large cell clusters (16, 17). This aggregation is completely inhibited by anti-LFA-1 monoclonal antibody (MAb) (14, 15, 18). In further support of the importance of LFA-1 in this adhesion reaction, lymphocytes from LFA-1-deficient patients fail to self-aggregate. LFA-1 deficient lymphocytes, however, can form mixed aggregates with normal (LFA-1⁺) lymphocytes, suggesting the involvement of additional surface molecules (15).

To identify additional intercellular adhesion molecules (ICAM), MAb were prepared against LFA-1-deficient lymphocytes and were screened for their ability to inhibit
aggregation of LFA-1 lymphocytes. A MAB, RR 1/1, was obtained to an antigen distinct from LFA-1 that inhibited the phorbol ester-stimulated self-aggregation of a B lymphoblastoid and a myelomonocytic cell line. 2 This antigen has been designated ICAM-1. Here we report that ICAM-1 is present on non-hematopoietic and hematopoietic cells. ICAM-1 surface expression on dermal fibroblasts is rapidly up-regulated by interleukin 1 (IL 1) and interferon gamma (IFN-gamma) in a process that is dependent on de novo mRNA and protein synthesis. ICAM-1 regulates the natural adhesion of lymphocytes to dermal fibroblasts. Furthermore, the M, of mature ICAM-1 glycoprotein, its intracellular precursor, and the polypeptide backbone have been characterized in hematopoietic and non-hematopoietic cells.

MATERIALS AND METHODS

Reagents. Recombinant mouse IL 1 (1 x 10^8 U/mg) was a gift of Dr. P. Lomedico, Hoffman-LaRoche Inc., Nutley, NJ. Recombinant human IFN-gamma (10^8 U/mg) and IFN-gamma (10^8 U/mg) was a gift of Dr. D. Novick, Virology Department, Weizmann Institute, Rehovot, Israel. Human tumor tissue (CD 3 2.6 x 1.1) was a gift of Dr. R. Hall, Eli Lilly, Indianapolis, IN. Affinity-purified goat anti-mouse IgG and fluorescein isothiocyanate (FITC)-goat anti-mouse IgG was purchased by Zymed, South San Francisco, CA. Actinomycin D was purchased from Calbiochem, San Diego, CA. Trypsin treatments were purchased from Gibco, Grand Island, NY. Radiochemicals were obtained from New England Nuclear, Boston, MA. Protein A Sepharose and Sepharose CL-4B were purchased from Pharmacia Fine Chemicals, Piscataway, NJ. All other reagents were of the highest grade available and were obtained from Fisher, Fair Lawn, NJ, or Sigma Chemical Co., St. Louis, MO.

Hybridomas (MAH M1 Shih). Hybridomas were grown in RPMI 1640 or DMEM plus 20 mM l-glutamine, 50 mM 2-mercaptoethanol, 50 ug/ml gentamicin, and 5% or 10% fetal bovine serum (FBS). The supernatants from post-log cultures were collected and were complement inactivated by heating at 56°C for 30 min. Preparation of the hybridomas used was described. RR 1/1, 17 TS 122.1 (19), TS 2/9.1.1 (19), TS 2/18.1 (19), and W6/32 (20). Control supernatants were from P3X63Ag8.6.7 producing myeloma cell line.

Purification of human monocyte (HM) IL 1. Human plategel-pherins by-products were used as a source of monoclonal cells. The adherent cell population was stimulated with opsonized heat-killed Staphylococcus albus in the presence of methionine-free medium containing 50 mg/ml of L-methionine and was incubated for 36 hr. The supernatant was purified by sequential immunoaabsorbance, gel filtration, and chromatofocusing. Details of the purification have been published (21). The IL 1 was isolated using the co-stimulator assay (23). The specific activity of HM IL 1 was approximately 1 U/μg as estimated from the gel. One IL 1 unit is defined as doubling the mitogen response.

Human recombinant (HR) IL 1. The IL 1 cDNA was expressed in E. coli by isolating the 1112 bp Ncol-XmnI fragment (bp 295-1407) from the 1 cDNA plasmid pcd 12-18 (24). The HR-IL 1 included 46 amino acids of the IL 1 precursor peptide that are present before the ala nine at position 47. This alanine is the N-terminus of the processed IL 1 found in the supernatants of stimulated human blood monocytes. 125I-labeled IL 1 was isolated using insoluble fraction with 8 M urea. HR-IL 1 was purified by sequential gel filtration and either gel filtration chromatography or FPLC. The HR- IL 1 was stored at −70°C in 0.15 M phosphate-buffered saline, pH 6.8. The identity of the purified HR-IL 1 was confirmed by amino acid composition and the sequence of the amino terminus. Purity (assessed by SDS-PAGE) was greater than 95%. The endotoxin content of the homogeneous HR-IL 1 was approximately 20 ng/μl of IL 1 protein.

Preparation of IL 1-containing U937 supernatant. U937 cells were incubated in Teflon beakers at 4 x 10^6 cells/ml with 2 mg/ml PMA and were dialyzed against balanced salt solution (HBSS) and 1% bovine serum albumin for 3 days with three dialyze changes to remove free phorbol myristic acid (PMA). This source of IL 1 activity was used for biochemical characterization and other procedures requiring large volumes of cells. It has been demonstrated that IL 1 from U937 has identical effects to IL 1 in an endotoxin-free system (27). Thus, crude U937 supernatant probably contains other materials, such as tumor necrosis factor, which may also have IL 1 like activities. An anti-IL 1 antiserum inhibited the U937 IL 1 activity.

Cells and cell culture. In general cells were maintained in RPMI 1640, 20 mM l-glutamine, 50 μM 2-mercaptoethanol, 50 μg/ml gentamicin, and 10% FBS at 37°C in a 5% CO2, 95% air humidified atmosphere. Human dermal fibroblasts derived from foreskins were obtained from Dr. J. Rheinwald, Dana Farber Cancer Institute, Boston, MA. The premalignant leukemia-derived cell line HL-60 and the erythroleukemia cell line K562 were obtained from Dr. J. Stromberg, Dana-Farber Cancer Institute. The T cell hybridoma line SKW3 was obtained from Dr. P. Cresswell, Duke University, Durham, NC. An anti-JY CTL clone was obtained from Dr. S. Meltzer, Dana-Farber Cancer Institute, Boston, MA. The SV-40-transformed fibroblast cell line M1 (26) was provided by Dr. C. Terhorst, Dana-Farber Cancer Institute. Epstein-Barr virus (EBV)-transformed human B lymphocytes from whole blood were prepared as described (27). Phagotrophomagglutinin (PHA) blasts were prepared from isolated peripheral blood mononuclear cells (28). Briefly, mononuclear cells isolated from whole blood by dextran sedimentation and Picoill-Hypaque (d = 1.08) centrifugation were incubated for 4 days in complete medium (CM) plus 10% FBS and 1,000 PHA. The cells were washed and were resuspended in CM plus IL 2 (28) and were always maintained between 0.5 and 5 x 10^6 cells/ml. The blasts were used 6 days after stimulation.

Immunochemical staining. Frozen tissue sections (4 μm thick) of normal human tissues (thymus, lymph nodes, tonsil, kidney, liver, small and large intestine, and skin) were fixed in acetone for 10 min and were stored at −20°C with the rest of the tissue. For peroxidase-antiperoxidase technique by using avidin-biotin complex method (Vector Laboratories, Burlingame, CA) as described (29). After incubation with the RR 1/1 antibody, the sections were sequentially incubated with biotinylated horse anti-mouse IgG and avidin-biotinylated peroxidase complexes. The sections were finally dipped in a solution containing 3-amino-9-ethyl-carbozole (Aldrich Chemical Co., Inc., Milwaukee, WI) as the substrate, and the reaction was stopped by immersing the sections in formaldehyde for 5 min and were counterstained with hematoxylin. Controls included sections incubated with unrelated MAb instead of RR 1/1 antibody.

Immunofluorescence flow cytometry. Nonadherent cells were isolated by centrifugation, were washed twice at 4°C with HBSS plus 10 mM HEPES, no Ca++ or Mg++, 2 g/ml EDTA, 0.05% sodium azide, and 10% heat-inactivated FBS (EDTA buffer), and were resuspended in the same to 10^6 cells/ml. Fibroblast cell layers were washed once with HBSS, no Ca++ or Mg++, 10 mM HEPES, and 2 g/ml EDTA and were incubated for 15 min at 37°C in the same. Cells were suspended in 200 μl of the antibody and were incubated for 60 min at 37°C. The cells were removed with the EDTA buffer, and clumps were dispersed by using a rotating Teflon pestle homogenizer at 50 rpm for 30 sec at 4°C. The suspension was then filtered to remove clumps and cells were collected by centrifugation at 1,000 x g for 25 min. The cells at the interface were collected and were resuspended in 50 μl of EDTA buffer and were analyzed by using the FACS. Positive cells and negative controls were analyzed by using the FACS. Data were analyzed within 5 days. Samples were analyzed on a Coulter Epics V flow cytometer (Coulter Electronics, Hialeah, FL).

Binding assay. Human dermal fibroblasts were grown in 96-well microtiter plates (Costar) to a density of 2 x 10^5 cells/well (0.32 cm²). The cells were washed twice with CM and once with HBSS, 10 mM HEPES, 0.05% NaBH4, and 2 g/ml EDTA (final EDTA buffer) at 4°C. To each well was added 50 μl binding buffer and 50 μl of the appropriate hybridoma supernatant with X63 and W6/32 as the negative and positive controls, respectively. After incubation for 30 min at 4°C with gentle agitation, the wells were washed twice with binding buffer, and the secondary antibody, 125I-goat anti-mouse IgG, was added at 50 nCi in 100 μl. The 125I-goat anti-mouse IgG was prepared by using iodogen (Pierce) (30). After 30 min at 4°C, the
INTERCELLULAR ADHESION MOLECULE-1 CHARACTERIZATION

5026

PILLARS OF IMMUNOLOGY

INTERCELLULAR ADHESION MOLECULE-1 CHARACTERIZATION

5026

PILLARS OF IMMUNOLOGY
as well as B cells. In some lymphoid follicles the staining pattern was mostly dendritic with no recognizable staining of lymphocytes. Faint staining of cells in the mantle zone was also observed. In addition, dendritic cells with cytoplasmic extensions (interdigitating reticulum cells) and a small number of lymphocytes in the interfollicular or paracortical areas stained with ICAM-1 antibody.

Cells resembling macrophages were stained in the lymph nodes and lamina propria of small intestine. Fibroblast-like cells (spindle shaped cells) and dendritic cells scattered in the stroma of most of the organs studied stained with ICAM-1 antibody. However, there was no recognizable staining of Langerhans/indeterminate cells in the epidermis. Smooth muscle did not stain.

The staining of epithelial cells was consistently seen in the mucosa of the tonsils. Although hepatocytes, bile duct epithelium, intestinal epithelial cells, and tubular epithelial cells in kidney did not stain in most instances, sections of normal kidney tissue obtained from a nephrectomy specimen with renal cell carcinoma showed staining of many proximal tubular cells for ICAM-1. Interestingly, the tubular epithelial cells in this case also stained with an anti-HLA-DR antibody.

Immunofluorescence flow cytometry. Flow cytometry analysis of tumor cell lines and peripheral blood leukocytes supported the results obtained in frozen tissue sections (Table II). Peripheral blood leukocytes had low but significant expression of ICAM-1. ICAM-1 expression on cell lines followed the trend: EBV-transformed B lymphoblastoid lines > erythroleukemia cell line K562 > anti-JY CTL line > PHA-blasts. The T cell lymphoma cell line SKW3 expressed ICAM-1 at approximately the same level as peripheral blood mononuclear cells. The myelomonocytic cell lines U937 and HL-60 can be induced to express monocye/macrophage-like characteristics by incubation with PMA over a period of 3 days. This induction of more differentiated properties that may be analogous to the normal differentiation of monoblasts to monocyte/macrophages (38) was accompanied by a dramatic increase in ICAM-1 expression. HL-60 expression of ICAM-1 went from negative to strongly positive, and U937 expression was increased 15-fold.

A human dermal fibroblast explant from a normal donor and a SV-40-transformed fibroblast cell line M1 were also analyzed by flow cytometry (Table II). Expression on the dermal fibroblast varied from 28 to 49 fluorescence units depending on cell density, with cells in log phase growth expressing less ICAM-1 than quiescent cells (see below Fig. 2, profile A3 and B3). In at least five experiments, there was a positive correlation between cell density and ICAM-1 expression (not shown). ICAM-1

Table II

<table>
<thead>
<tr>
<th>Cell Line/Type</th>
<th>Specific Fluorescence Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aICAM-1 (R1/1)</td>
</tr>
<tr>
<td>JY B lymphoblastoid</td>
<td>28</td>
</tr>
<tr>
<td>SLA LFA-1+ B lymphoblasto</td>
<td>50</td>
</tr>
<tr>
<td>HFO LFA-1+ B lymphoblasto</td>
<td>11</td>
</tr>
<tr>
<td>SKW3 T-lymphoma</td>
<td>130</td>
</tr>
<tr>
<td>PHA-blasts</td>
<td>3.2</td>
</tr>
<tr>
<td>a JY CTL line</td>
<td>9.1</td>
</tr>
<tr>
<td>K562 erythroid/myeloid</td>
<td>9.7</td>
</tr>
<tr>
<td>K562 + IFN-γ</td>
<td>32</td>
</tr>
<tr>
<td>U937 monoblastoid</td>
<td>7.4</td>
</tr>
<tr>
<td>U937 + PMA</td>
<td>114</td>
</tr>
<tr>
<td>HL60 myeloblastoid</td>
<td>0</td>
</tr>
<tr>
<td>HL60 + PMA</td>
<td>49</td>
</tr>
<tr>
<td>Dermal fibroblasts (5-19th passage)</td>
<td>29</td>
</tr>
<tr>
<td>M1 fibroblast</td>
<td>0.3</td>
</tr>
</tbody>
</table>

K562 cells were treated with 10 U/ml recombinant IFN-γ for 24 hr. U937 and HL-60 cell lines were treated with 2 and 10 ng/ml PMA, respectively, for 3 days. Monodisperse suspensions were obtained by trituration. Peripheral blood leukocytes were separated into granulocyte and mononuclear cell fractions by Ficoll-Hypaque centrifugation. Monocytes and lymphocytes were resolved during the analysis by forward angle and 90° light scattering. Selection of the correct populations was confirmed by using monocyte markers. Fluorescent beads were used to calibrate the cytometer such that one unit was equal to 1/20th the fluorescence of the 1/32 (2%) bright fluorosphere (Coulter).
expression on the cell-line M1 was very low but was reproducibly detectable by both immunofluorescence and binding of 125I-labeled ICAM-1 MAb (not shown).

Modulation of ICAM-1 expression by IL 1 and IFN-γ. The effects of inflammatory and immune cytokines on ICAM-1 expression were investigated, because several surface molecules have been shown to be modulated by these factors (39–41) and staining of frozen tissue sections showed increased ICAM-1 expression in reactive lymphoid tissue and in delayed type hypersensitivity inflammatory sites (data not shown). Human dermal fibroblasts were used as targets, because these cells were readily available, had been used in these kinds of studies previously (40), and may play a significant role in inflammatory and immune responses (40, 42).

Incubation of human dermal fibroblasts with IL 1-containing U937 supernatant for 5 hr (Fig. 2A) increased ICAM-1 expression 4.3 ± 1.1-fold (four experiments with cells both in logarithmic and stationary growth). Incubation with 100 U/ml recombinant human IFN-γ for 18 hr (Fig. 2B) resulted in a fivefold increase in ICAM-1 expression. Incubation with IL 1-containing U937 supernatant resulted in a small increase in HLA-A,B,C expression, whereas IFN-γ increased HLA-A,B,C expression by 2.5-fold and resulted in detectable expression of HLA-DR (not shown). Forward angle light scattering was not affected by incubation with IL 1 or IFN-γ, suggesting that no significant change in cell size or cytoplasmic contents occurred. Although basal ICAM-1 expression was density dependent, cell density did not affect the level to which ICAM-1 could be induced by a given activity of IL 1 or IFN-γ. IFN-β (10 to 1000 U/ml) and prostaglandin E₂ (PGE₂) (0.28 to 28 μM) had no effect on fibroblast ICAM-1 expression at 24 hr (not shown).

Time course of HM IL 1 and IFN-γ effects. The kinetics of HM IL 1 and IFN-γ effects on ICAM-1 expression on dermal fibroblasts were determined using a 125I-goat anti-mouse IgG binding assay. The effect of IL 1 with a t_0 for ICAM-1 induction of 2 hr was more rapid than that of IFN-γ with a t_0 of 3.75 hr (Fig. 3). No significant change in HLA-A,B,C expression was seen with HM IL 1, whereas IFN-γ induced expression of those antigens by approximately twofold at 10 hr (not shown). The time-course of return to resting levels of ICAM-1 appears to depend on the cell cycle or rate of growth. In quiescent cells, the HM IL 1 and IFN-γ effects are stable for 2 to 3 days, whereas in log phase cultures, ICAM-1 expression is near baseline 2 days after removal of IL 1 or IFN-γ (not shown).

Concentration dependence of IL 1 and IFN-γ effect. The dose response curves for induction of ICAM-1 by recombinant mouse and human IL 1, for purified HM IL 1 and for recombinant human IFN-γ were compared (Fig. 4). IFN-γ and HM IL 1 have similar concentration dependencies with nearly identical effects at 1 ng/ml. The human and mouse recombinant IL 1 also have similar curves but are much less effective than the HM IL 1. Both recombinant IL 1 were purified under denaturing conditions, and contain sequences that are removed by processing in HM IL 1. The recombinant human IL 1 is presently 100-fold less effective than the HM IL 1 in the endogenous pyrogen assay (Dinarello, unpublished ob-
INTERCELLULAR ADHESION MOLECULE-1 CHARACTERIZATION

IFN-γ has no effect at concentrations up to 10 ng/ml.

Requirement for protein and mRNA synthesis. Cycloheximide, an inhibitor of protein synthesis, and actinomycin D, an inhibitor of mRNA synthesis, abolished the effects of both IL 1 and IFN-γ on ICAM-1 expression on fibroblasts (Table III). Furthermore, tunicamycin, an inhibitor of N-linked glycosylation, only inhibited the IL 1 effect by 43%. These results suggest that protein and mRNA synthesis, but not N-linked glycosylation, are required for IL 1 and IFN-γ-stimulated increases in ICAM-1 expression.

Molecular characterization of ICAM-1. ICAM-1 was isolated from different cell types by using MAb coupled to Sepharose, subjected to SDS-PAGE, and visualized by silver-staining (Fig. 5). ICAM-1 from fibroblasts is a monomer of 100,000 M₉, and ICAM-1 from PMA-stimulated U937 cells is 114,000 M₉. ICAM-1 from JY cells is 90,000 M₉. This heterogeneity in M₉ appears to reflect differences in glycosylation [see below]. M₉ estimates from reducing and nonreducing gels were similar. ICAM-1 immunoprecipitated from hairy cell leukemia spleen lysates was similar in size to the M₉ = 90,000 species isolated from JY (not shown).

The quantities of ICAM-1 in unstimulated and stimulated cells were controlled after isolation on the basis of ICAM-1 expression. A marked increase in cell content of ICAM-1 was seen when fibroblasts were stimulated with IL 1 for 4 hr (Fig. 5, lane 4 compared with lane 2). Similarly, ICAM-1 was strongly expressed in U937 cells stimulated with phorbol ester for 3 days (Fig. 5, lane 7), but was barely visible in uninduced U937 cells (Fig. 5, lane 6). This confirmed that the increase in surface antigen expression resulted from increased net protein synthesis, and was not simply due to an increase in the ratio of cell surface to total ICAM-1. Furthermore, immunofluorescence of fixed, permeabilized cells showed a punctate, ring staining pattern with little or no intracellular staining, also suggesting little intracellular deposition of ICAM-1 (not shown).

Pulse-chase metabolic labeling of ICAM-1 and metabolic labeling in the presence of tunicamycin were used to study the biosynthesis and the unglycosylated m.w. of ICAM-1. Dermal fibroblasts treated with IL 1-containing U937 supernatant were pulsed with [³⁵S]methionine for 10 min followed by a variable chase period. After which the cells were lysed and ICAM-1 was isolated by using MAb-Sepharose. ICAM-1 has a precursor of M₉ = 73,000 (Fig. 6, lane 1), which is converted to the mature M₉ = 97,000 form between 20 and 50 min (Fig. 6, lanes 3 through 5). Labeling in the presence of tunicamycin followed by isolation of ICAM-1 results in a sharp band at

TABLE III	Effects of cycloheximide, actinomycin D, and tunicamycin on ICAM-1 induction by IL 1 and IFN-γ on human dermal fibroblasts*	
Treatment	¹²⁵I Anti-Mouse IgG (Specifically Bound cpm)	
	αCAM-1	αHLA A,B,C
Control (4 hr)	1524 ± 140	11928 ± 600
+ cycloheximide	1513 ± 210	10678 ± 471
+ actinomycin D	1590 ± 46	12276 ± 608
+ tunicamycin	1461 ± 176	2340 ± 940
IL 1 (10 U/ml) (4 hr)	4264 ± 249	21155 ± 510
+ cycloheximide	1619 ± 381	12676 ± 446
+ actinomycin D	1613 ± 88	12294 ± 123
+ tunicamycin	1084 ± 113	1343 ± 661
IFN-γ (10 U/ml) (18 hr)	4659 ± 109	23675 ± 500
+ cycloheximide	1461 ± 59	10675 ± 800
+ actinomycin D	1326 ± 186	2089 ± 550

*Human fibroblasts were grown to a density of 8 x 10⁶ cells/0.32 cm² well. Treatments were carried out in a final vol of 50 µl containing the indicated reagents. Cycloheximide, actinomycin D, and tunicamycin were added at 20 µg/ml, 10 µM, and 2 µg/ml, respectively, at the same time as the cytokines. All points are means of quadruplicate wells ± SD.

![Figure 5](image)

![Figure 6](image)
an $M_r = 55,000$ (Fig. 6, lane 9). To evaluate the contribution of glycosylation to the heterogeneity of ICAM-1 from different cell types, we made use of trifluoromethane sulfonic acid, which removes both N- and O-linked oligosaccharides [32]. This treatment results in essentially identical banding patterns for fibroblast and PMA-stimulated U937 ICAM-1, with a major band at an $M_r = 60,000$ and a minor band at an $M_r = 47,000$ (Fig. 6, lanes 11 and 12). This result shows that dernal fibroblast and U937 ICAM-1 have polypeptides with identical M_r, suggesting the polypeptides are identical and carbohydrate processing leads to the different M_r of the mature proteins in these two cell types. The presence of two species after TFMS modification makes it unclear whether or not ICAM-1 contains O-linked oligosaccharides. Incomplete removal of O-linked oligosaccharides could account for the two bands. Alternatively, a site-specific cleavage of the polypeptide chain occurring to a similar extent in both samples could also yield two bands.

Natural attachment assay. The adhesion of in vitro activated T lymphocytes to dermal fibroblasts in a non-antigen-specific manner has been described and is referred to as natural attachment [43–45]. This system has been used here to study lymphocyte adhesion to cells on which ICAM-1 expression can be modulated and for which adhesion can be readily assayed by measuring attachment of radiolabeled lymphoid cells to fibroblast cell layers. To obtain activated T lymphocytes, peripheral blood lymphocytes were stimulated with PHA, were washed, and then were cultured in the absence of PHA for 3 to 6 days. Under these conditions, surface-bound PHA is internalized and would not contribute to the adhesion reaction. Figure 7 shows the adhesion of fluorescently labeled PHA blasts to sparsely plated fibroblasts. This demonstrates the nature and specificity of the interaction. Very few PHA blasts were bound to the plastic slide, whereas those bound to fibroblasts were often seen to spread out on the fibroblast apparently increasing the area of contact between cell surfaces.

MAb to ICAM-1 and other cell surface molecules were evaluated for their effect on the adhesion of 51Cr-labeled PHA blasts to continuous layers of dermal fibroblasts (Table IV). Natural attachment of PHA blasts was inhibited 70% by anti-ICAM-1 MAb. The T lymphoma cell line SKW3 was also studied because homotypic adhesion by this cell line was inhibited by anti-LFA-1 but not anti-ICAM-1 MAb. It was therefore an important question to determine whether heterotypic adhesion between SKW3 and ICAM-1+ fibroblasts would be inhibited by anti-ICAM-1 MAb. Natural attachment of SKW3 cells to fibroblasts was inhibited 78% by anti-ICAM-1 MAb. Attachment of PHA blasts and SKW3 cells was inhibited 66 to 76% by MAb to LFA-1 α and β subunits. In contrast, MAb to HLA-A,B,C, LFA-2, and LFA-3 had no effect. Anti-HLA-A,B,C binds to fibroblasts at greater density than any of the effective antibodies (Table II), which suggests that the inhibition seen with anti-ICAM-1 and anti-LFA-1 MAb is not due to nonspecific effects of surface-bound IgG. Purified anti-ICAM-1 IgG and Fab' half-maximally inhibited attachment of SKW3 at 0.2 μg/ml and 0.5 μg/ml, suggesting that anti-ICAM-1 is very efficient at inhibiting attachment and inhibition is not dependent on bivalency of the MAb (Fig. 8).

Preincubation of one cell population with MAb followed by natural attachment assay was used to identify the cell on which ICAM-1 and LFA-1 are required for adhesion in this heterotypic system (Table V). When fibroblasts were preincubated with anti-ICAM-1 MAb, adhesion was inhibited by 66 and 73%. Despite the presence of ICAM-1 on the lymphoid cells, preincubation of these cells with anti-ICAM-1 MAb had no effect on attachment. Preincubation of the lymphoid cells with anti-LFA-1 MAb inhibited attachment, but preincubation of fibroblasts with anti-LFA-1 MAb had no effect.

The effect of IL 1 pretreatment of dermal fibroblasts on natural attachment was determined to additionally evaluate the role of ICAM-1 in this adhesion process. There was a significant correlation between ICAM-1 surface expression and natural attachment when the dose responses for HM IL 1 were compared (Fig. 9). Furthermore, the amount of natural attachment that was inhibitable by anti-ICAM-1 showed a similar increase. Binding not inhibitable by anti-ICAM-1 changed little over the range of IL 1 concentrations used. A significant increase in SKW3 binding of twofold to threefold is also

Figure 7. PHA-blasts binding to human dermal fibroblasts. PHA blasts (10 days) were labeled with carboxyfluorescein diacetate (40 μg/ml) by incubation in CM with 1% serum. The PHA blasts were washed and were added to plastic slides (Titer-trek) with sparsely plated fibroblasts at >10 PHA blasts: 1 fibroblast. After 1 hr at 37°C, the unattached cells were washed out, and the slide was observed immediately by using a combination of visible wavelength phase illumination and fluorescence without fixation. Bar = 20 μm.
TABLE IV

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Cells Bound x 10^-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHA blasts</td>
</tr>
<tr>
<td>X63</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td>oICAM-1</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td>oLFA-1</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>oLFA-1-β</td>
<td>0.65 ± 0.1</td>
</tr>
<tr>
<td>oHLA-A, B, C</td>
<td>2.6 ± 0.1</td>
</tr>
<tr>
<td>oLFA-2</td>
<td>2.6 ± 0.1</td>
</tr>
<tr>
<td>oLFA-3</td>
<td>2.4 ± 0.1</td>
</tr>
</tbody>
</table>

* Human dermal fibroblasts were grown to 5 x 10^5 cells/2.01 cm² well. PHA blasts or SKW3 (2 x 10^5 cells/well) were added and incubated for 1 hr at 37°C. PHA blasts had an activity of 5.8000 cpm/10⁵ cells and SKW3 of 120,000 cpm/10⁵ cells. Hybridoma supernatants were added at a dilution of 1/10 just before addition of the labeled cells. The final volume was 1 ml. The results are means of quadruplicate determinations ± SD.

* ND: not done.

Figure 9. Correlation between IL 1 up-regulation of ICAM-1 and increase in PHA blast binding to dermal fibroblasts. Fibroblasts were grown to 5 x 10^5 cells/2.01 cm² well. IL 1 was added at the appropriate concentration 4 hr before addition of 51Cr-PHA blasts. PHA blasts were added to 2 x 10^5 cells/well just after addition of a 1/10 dilution of the appropriate hybridoma supernatant to a final vol of 1 ml. The plates were incubated for 1 hr at 37°C, and unattached cells were washed out. Binding in the absence (●) and presence (○) of anti-ICAM-1 hybridoma supernatant is shown. The IL 1 dose-response curve for a parallel assay of ICAM-1 MAbs binding by using 125I-goat anti-mouse IgG is shown for comparison (- - - - -). Each point is a mean of four wells. The SD did not exceed 10% for cell binding or 20% for 125I goat anti-mouse IgG binding and are not shown.

Figure 8. Effect of anti-ICAM-1 IgG and Fab' on PHA blast binding to human dermal fibroblasts. Fibroblasts were grown to 2.5 x 10^5 cells/2.01 cm² well. PHA blasts (2 x 10^5) and the MAb (●) or MAAb fragments (□) were added and were incubated 1 hr at 37°C. Final volume was 1 ml.

TABLE V

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>Lymphoid cell or fibroblast pretreatment with MAAb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cells Bound x 10^-4</td>
</tr>
<tr>
<td>None</td>
<td>PHA blasts</td>
</tr>
<tr>
<td>None</td>
<td>oICAM-1</td>
</tr>
<tr>
<td>None</td>
<td>oLFA-1</td>
</tr>
<tr>
<td>None</td>
<td>oHLA-A, B, C</td>
</tr>
<tr>
<td>None</td>
<td>oICAM-1</td>
</tr>
<tr>
<td>None</td>
<td>oLFA-1</td>
</tr>
<tr>
<td>None</td>
<td>oHLA-A, B, C</td>
</tr>
</tbody>
</table>

* Human dermal fibroblasts were grown to 2 x 10^5 cells/2.01 cm² well. Fibroblasts or T lymphoid cells were incubated with a 1/10 dilution of hybridoma supernatant for 30 min at 24°C and then were washed three times with CM. PHA blasts or SKW3 (2 x 10^5) were added to wells in a final vol of 1 ml of CM with no more addition of hybridoma supernatant. The results are the mean of quadruplicate determinations ± SD.

Discussion

ICAM-1 is a glycoprotein expressed on the surface of both hematopoietic and non-hematopoietic cells. Although ICAM-1 expression is uniformly low on peripheral blood leukocytes, it is expressed to higher levels on EBV-transformed B lymphocyte blasts, mitogen-stimulated T lymphocyte blasts, a cloned CTL line, macrophage-like cells in several organs, and dendritic cells and possibly B lymphocytes in germinal centers. ICAM-1 is also induced seen with fibroblasts incubated with 10 U/ml HM IL 1 for 4 hr (not shown).

These studies establish that IL-1 and IFN-γ increase ICAM-1 expression on fibroblasts and suggest that ICAM-1 may play roles in inflammatory and immune responses. IL-1 and IFN-γ have been reported to have other effects on dermal fibroblasts. For example, IL-1 stimulates proliferation (45), PGE₂ synthesis, and collagenase production (42, 47), whereas IFN-γ decreases collagen synthesis, causes a late inhibition of proliferation (40), increases PGE₂ elaboration (49), and increases expression of class I and II MHC antigens (40). IFN-β, which does not increase ICAM-1 expression on dermal fibroblasts, also decreases collagen synthesis, causes growth inhibition (48), and increases expression of class I, but not class II MHC antigens (40). The regulation of ICAM-1 expression on dermal fibroblasts is novel in that it is the only antigen expression in fibroblasts with IFN-γ, does not up-regulate the expression of ICAM-1.

IL-1 and IFN-γ also increase ICAM-1 expression on endothelial cells. A comparison of IL-1-induced surface expression of ICAM-1 and another antigen that is specific.

for endothelial cells and is identified by the MAb H4/18 (41). ICAM-1 expression was increased threefold to fourfold on endothelial cells by IL 1 and eightfold by tumor necrosis factor. The expression of the antigen recognized by H4/18 was induced by IL 1 on endothelial cells but was not detected on resting endothelial cells. The antigen recognized by H4/18 also shows different kinetics of induction with a peak at 4.5 hr followed by decay of expression down to almost background levels by 24 hr even in the presence of IL 1 or tumor necrosis factor. In contrast, ICAM-1 expression continues to increase for 24 hr and remains stable for 72 hr.

The ICAM-1 glycoprotein displays M, heterogeneity in different cell types. On the basis of the results of chemical deglycosylation with TFMS, it appears that this heterogeneity is based on differential glycosylation of a common polypeptide, although it remains to be rigorously demonstrated that the polypeptides from dermal fibroblasts and U937 are identical. Pulse-chase metabolic labeling of fibroblast ICAM-1 shows that a precursor of M, = 73,000 is converted to a mature form of M, = 97,000 in 20 to 30 min. If maturation in the Golgi complex is followed by transport to the cell surface within a few minutes, then this data would be consistent with the rapid mRNA and protein synthesis-dependent up-regulation of ICAM-1 by IL 1, which is apparent within 1 hr. The MAb RR 1/1 appears to bind to a protein epitope on ICAM-1, because RR 1/1 can immunoprecipitate ICAM-1 from cells labeled in the presence of tunicamycin. This is notable because the dermal fibroblast form of ICAM-1 is 45% carbohydrate as estimated by the mobilities of the glycosylated and nonglycosylated forms in SDS-PAGE. The product synthesized in the presence of tunicamycin was M, = 55,000. Estimating approximately 2,000 to 3,000 M, U per high mannose oligosaccharide on the intracellular precursor of M, = 73,000. ICAM-1 would contain approximately 6 to 9 such oligosaccharide units per molecule.

Previous studies demonstrated the importance of ICAM-1 and LFA-1 in PMA-stimulated self-adhesion of several leukocyte cell types (15). PHA blasts and the T lymphoma cell line SKW3 were used here to study the binding of lymphocytes to non-hematopoietic ICAM-1 positive cells, which lack leukocyte markers such as LFA-1. The major natural attachment assay in which activated but not resting T lymphocytes have been shown to adhere to fibroblasts in a species-specific manner (45). We found that both T lymphocyte blasts and SKW3 T lymphoma cells bind to dermal fibroblasts, and this binding is inhibitable by either anti-LFA-1 or anti-ICAM-1 MAb. Furthermore, it has been established here that ICAM-1 is required on the dermal fibroblast, whereas LFA-1 is required on the lymphocyte. On incubating dermal fibroblasts with IL 1 natural attachment was significantly increased in an IL 1 concentration-dependent manner that was correlated with ICAM-1 surface expression.

The importance of ICAM-1 and LFA-1 and the regulation by IL 1 suggest natural attachment is a functionally significant assay. Natural attachment may represent part of the non-antigen-specific component of leukocyte adhesion in functions such as antigen presentation (50), and cytotoxic T lymphocyte-mediated killing (13). ICAM-1 modulation by IL 1 and IFN-γ at sites of monocyte or T lymphocyte activation might increase the tendency of T lymphocytes to adhere to connective tissue cells such as fibroblasts on which ICAM-1 expression is stimulated and increase the probability of afferent or efferent T lymphocyte functions.

A possible role for ICAM-1 in lymphocyte diapedesis is suggested by immunoperoxidase staining of sections of tonsils and lymph nodes reacting to inflammation that show very strong ICAM-1 expression on vascular endothelial cells in T lymphocyte areas. Furthermore, areas of delayed hypersensitivity reaction in skin show more intense staining of ICAM-1 on vascular endothelial cells as compared with vessels in normal skin (unpublished observation). ICAM-1 induction on endothelial cells by inflammatory mediators may facilitate margination and extravasation of T and possibly B lymphocytes at sites of inflammation or a localized inflammatory immune response. It could be speculated that because ICAM-1 upregulation on endothelial cells by IL 1 is rapid, increased adhesion of lymphocytes mediated by ICAM-1 might be an event mediating lymphocyte influx into inflammatory loci. Subsequent production of IFN-γ by activated lymphocytes at the inflammatory site might mediate additional amplification of the local inflammatory immune response.

ICAM-1 has some properties in common with the papa- and trypsin sensitive molecule proposed to be LFA-1 ligand (11, 12). ICAM-1 on JY cells is trypsin sensitive under the same conditions as those used to define the hypothetical ligand (unpublished observations). Furthermore, ICAM-1 appears to be required in two LFA-1-dependent adhesion systems, leukocyte self-aggregation and natural attachment. These results suggest that ICAM-1 could be a cell surface molecule that interacts with LFA-1 on other cells.

The work reported here suggests that ICAM-1 is important in leukocyte adhesion and is regulated in a manner consistent with its being an important molecule in inflammatory and immune responses. Additional work is required to define the receptor for ICAM-1 and the exact molecular interactions involved in ICAM-1-dependent cell-cell adhesion.

Acknowledgments. We are grateful to Linda Miller for her valuable contribution of IX37 and HL-60 differentiation data and to Dr. Jordan Pober for sharing the result that IL 1 increases ICAM-1 expression on dermal fibroblasts and endothelial cells. We also thank Dr. Steve Marlin, Dr. Marian Plunkett, Kei Kishimoto, and Linda Miller for their advice and discussion of results, and Janet Casaubon for secretarial assistance.

REFERENCES