Central Nervous System Demyelinating Disease Protection by the Human Commensal *Bacteroides fragilis* Depends on Polysaccharide A Expression

Javier Ochoa-Repáraz, Daniel W. Mielcarz, Lauren E. Ditrio, Ashley R. Burroughs, Sakhina Begum-Haque, Suryasarathi Dasgupta, Dennis L. Kasper and Lloyd H. Kasper

J Immunol 2010; 185:4101-4108; Prepublished online 3 September 2010; doi: 10.4049/jimmunol.1001443

http://www.jimmunol.org/content/185/7/4101

Supplementary Material http://www.jimmunol.org/content/suppl/2010/09/03/jimmunol.1001443.3.DC1

References This article cites 32 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/185/7/4101.full#ref-list-1

Why *The JI*? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Central Nervous System Demyelinating Disease Protection by the Human Commensal *Bacteroides fragilis* Depends on Polysaccharide A Expression

Javier Ochoa-Reparaz,* Daniel W. Mielcarz,† Lauren E. Ditrio,† Ashley R. Burroughs,‡ Sakhina Begum-Haque,* Suryasarathi Dasgupta,‡ Dennis L. Kasper,‡ and Lloyd H. Kasper*

The importance of gut commensal bacteria in maintaining immune homeostasis is increasingly understood. We recently described that alteration of the gut microbiota can affect a population of Foxp3+Treg cells that regulate demyelination in experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We now extend our previous observations on the role of commensal bacteria in CNS demyelination, and we demonstrate that *Bacteroides fragilis* producing a bacterial capsular polysaccharide Ag can protect against EAE. Recolonization with wild type *B. fragilis* maintained resistance to EAE, whereas reconstitution with polysaccharide A-deficient *B. fragilis* restored EAE susceptibility. Enhanced numbers of Foxp3+Treg cells in the cervical lymph nodes were observed after intestinal recolonization with either strain of *B. fragilis*. Ex vivo, CD4+T cells obtained from mice reconstituted with wild type *B. fragilis* had significantly enhanced rates of conversion into IL-10–producing Foxp3+Treg cells and offered greater protection against disease. Our results suggest an important role for commensal bacterial Ags, in particular *B. fragilis* expressing polysaccharide A, in protecting against CNS demyelination in EAE and perhaps human multiple sclerosis. *The Journal of Immunology, 2010, 185: 4101–4108.*

Multiple sclerosis (MS) is a human disease of the CNS that is characterized by an inflammatory process followed by demyelination and axonal loss (1). In MS, autoreactive cells respond to self-Ags by inducing inflammation and attack the CNS, causing the axonal damage. Experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for human MS, has provided significant information suggesting the role of T cells in the induction of this autoimmune disorder (2). It has been hypothesized that encephalitogenic T cells are activated in the periphery and then cross the blood-brain barrier into the CNS, where they encounter the self-Ag, and become reactivated. This reactivation could induce the release of proinflammatory cytokines, provoking the activation of resident macrophage–microglia cells to release NO that is directly involved in the demyelination of the neuronal myelin sheath (3). There is substantial evidence collected in EAE suggesting that Th immune responses might be polarized toward Th1 and Th17 (1). Recent findings have further supported a primary role for IL-17 in the pathogenesis of human MS (4, 5).

Gut commensal microorganisms can modulate immune homeostasis (6–13). Studies in germ-free animals, born and raised in sterile conditions, showed that monoclonization with *Bacteroides fragilis* was sufficient to stimulate early development of the GALT, to induce normal organogenesis in the spleen and thymus, and balanced immune development (14). *Bacteroides* species are gram-negative bacteria that compose ∼25% of the microbiota in both humans and other mammals. *B. fragilis* is symbiotic with the host, but if it reaches sterile then extraluminal sites can be responsible for tissue infection, bacteremia, and abscess formation in the peritoneal cavity, brain, liver, pelvis, or lungs (15, 16).

The administration of a mixture of gut commensal bacteria can protect against EAE (17). The protection observed was found to be IL-10 dependent. We (18) and others (19) recently demonstrated that modification of the bacterial populations of the gut alters the clinical outcome of EAE in mice. Oral treatment of mice with antibiotics reduced EAE severity by diminishing proinflammatory responses and the enhancement of Foxp3+Treg cells that significantly accumulated in mesenteric and cervical lymph nodes (LNs). Adoptive transfer of these IL-10–producing T regulatory (Treg) cells conferred protection against EAE. In this study, we investigate the effect of oral antibiotic treatment followed by gut reconstitution with a human isolate of *B. fragilis* that produces the zwitterionic capsular polysaccharide A (PSA), or with an isogenic mutant of *B. fragilis* deficient in the production of PSA in the development and protection against EAE. PSA has been found to be determinant in the regulatory effect of *B. fragilis*, restoring the default Th2-immune bias of germ-free animals (14, 16, 20). Moreover, IL-10–producing CD4+CD45rblow T cells induced in response to PSA administration were protective in a *Helicobacter hepaticus* model of experimental colitis (21), and IL-10–producing Treg cells pro-
tective against EAE (22). In this study, we demonstrate that the absence of PSA production by a human isolate of \textit{B. fragilis} used to reconstitute disease-resistant mice restores clinical disease susceptibility, whereas the reconstitution with PSA-producing \textit{B. fragilis} maintains resistance by the induction of highly potent IL-10–producing T\(_{\text{reg}}\) cells. Our results suggest a potent regulatory role for this specific bacterial Ag in the control of CNS demyelination in this experimental model of human MS.

Materials and Methods

Mice and treatments

Female 6-wk old SJL/J mice were obtained from The Jackson Laboratories (Bar Harbor, ME). All animal care and procedures were in accordance with guidelines set by the Dartmouth College Animal Resources Center institutional policies for animal health and well-being. The animal supplier confirmed that all mice used in the studies were free of exposure to Helicobacter. Dartmouth College Animal Resources Center routinely screens for a wide range of infectious agents, including Helicobacter. Because germ-free housing was not available, mice were maintained in a restricted, access-controlled environment. All water, feed, and cages used were previously sterilized and changed daily. Mice were treated with the following antibiotics dissolved in drinking water for 1 wk: ampicillin (1 g/ml), vancomycin (0.5 g/ml), neomycin sulfate (1 g/ml), and metronidazole (1 g/ml) (23). Wild type (WT) \textit{B. fragilis} (National Collection of Type Culture 9343) and the isogenic mutant of PSA-deficient (\textit{APS}) \textit{B. fragilis} were provided by D.L. Kasper (Harvard Medical School). One week after treatment with antibiotics, mice were infected with 10\(^5\) WT or \(\Delta\text{PSA} \textit{B. fragilis}\) resuspended in 200 \(\mu\)l sterile PBS by a single-time oral gavage.

Bacteriologic analysis

Serial dilutions of intestinal and fecal samples were collected 1 wk after the end of treatment with antibiotics and/or bacterial reconstitution and cultured in general bacteriologic agar plates (CDC blood agar; BD Diagnostic Systems, Sparks, MD) and \textit{Bacteroides} selective media plates (\textit{Bacteroides} Bile Esculin Agar; BD Diagnostic Systems) for 48 h at 37°C. Plates were cultured in aerobic and anaerobic conditions. Total bacteria per gram of sample was calculated based on the colony forming units counted in each serial dilution.

EAE induction

SJL mice were challenged s.c. with 200 \(\mu\)g PLP\(_{139-151}\) (Peptides International, Louisville, KY) in 200 \(\mu\)l CFA (Sigma-Aldrich, St. Louis, MO). On days 0 and 2 after challenge, mice received 200 ng \textit{Borrelia perniciosa} toxin i.p. (List Biological Laboratories, Campbell, CA) (24). Mice were monitored and scored daily for disease progression (24).

Cytokine detection by Luminex and cytokine ELISA

Luminex and specific cytokine ELISA were used to quantify triplicate sets of supernatants. Cells were cultured in 24-well tissue plates at 2 \(\times\) 10\(^5\) cells/ml in the presence of anti-CD3 mAb-coated wells (10 \(\mu\)g/ml; BD Biosciences) for 2 d in the presence of anti-CD3/CD28 and IL-2 at different concentrations of TGF-\(\beta\) (0, 0.1, 0.5, and 5 ng/ml). To compare the role of CD11c\(^{hi}\)/CD103\(^{hi}\) cells in the conversion of CD4\(^{+}\)CD25\(^{+}\) T cells into Foxp3\(^{+}\)Treg cells, 1 \(\times\) 10\(^3\) sorted CD103\(^{hi}\) CD4\(^{+}\) T cells were cocultured with 5 \(\times\) 10\(^5\) splenic naive CD4\(^{+}\)CD25\(^{+}\) T cells in the presence of anti-CD3 Ab (plates were precoated with 10 \(\mu\)g/ml anti-CD3 Ab [BD Biosciences]). Cultures were set in the presence of PBS, purified PSA (100 \(\mu\)g/ml), or 4 \(\mu\)M retinoic acid (RA) and 5 ng/ml TGF-\(\beta\). Foxp3 acquisition by CD4\(^{+}\) T cells was measured by flow cytometry. For adoptive transfer experiments, 1 \(\times\) 10\(^3\) in vitro Foxp3\(^{+}\)Treg converted cells were injected i.v. into naive recipients. EAE was induced 1 d after adoptive transfers.

In vivo inactivation of CD25\(^{+}\) cells

To inhibit CD25\(^{+}\)CD4\(^{+}\) T cells, mice were given 0.3 mg anti-CD25 mAb (ATCC No. TIB-222, clone PC 61.5) on days 4 and 2 before EAE challenge (24). As a control group, treated and naive mice received 0.3 mg purified rat IgG Ab. A separate control group was immunized with PBS 7 d prior to EAE challenge.

Statistical analysis

Kruskal-Wallis followed by Dunn’s comparison of multiple groups was applied to show differences in EAE clinical scores, cumulative clinical scores, luminescence and ELISA detection of cytokines as well as in the flow cytometric analyses.

Cell purifications

CD11c\(^{+}\) cells were enriched with magnetic beads (StemCell Technologies, Vancouver, British Columbia, Canada) and then sorted (FACSVantage with TurboSort; BD Biosciences) after staining with FITC-anti-CD103 into CD11c\(^{hi}\)/CD103\(^{hi}\) cells. CD4\(^{+}\) T cells were obtained with magnetic beads (Dynal Biotech ASA, Oslo, Norway). The enriched CD4\(^{+}\) T cells were cell-sorted for CD4\(^{+}\)CD25\(^{+}\) T cells using FITC-anti–CD4 and PE-anti–CD25 mAbs (BD Biosciences).

In vitro conversion assays and adoptive transfer experiments

Cervical LN CD4\(^{+}\)CD25\(^{+}\) T cells were and cultured for 4 d in the presence of anti-CD3/CD28 and IL-2 at different concentrations of TGF-\(\beta\) (0, 0.1, 0.5, and 5 ng/ml). To compare the role of CD11c\(^{hi}\)/CD103\(^{hi}\) cells in the conversion of CD4\(^{+}\)CD25\(^{-}\) T cells into Foxp3\(^{+}\)Treg cells, 1 \(\times\) 10\(^3\) sorted CD103\(^{hi}\) CD4\(^{+}\) T cells were cocultured with 5 \(\times\) 10\(^5\) splenic naive CD4\(^{+}\)CD25\(^{+}\) T cells in the presence of anti-CD3 Ab (plates were precoated with 10 \(\mu\)g/ml anti-CD3 Ab [BD Biosciences]). Cultures were set in the presence of PBS, purified PSA (100 \(\mu\)g/ml), or 4 \(\mu\)M retinoic acid (RA) and 5 ng/ml TGF-\(\beta\). Foxp3 acquisition by CD4\(^{+}\) T cells was measured by flow cytometry. For adoptive transfer experiments, 1 \(\times\) 10\(^3\) in vitro Foxp3\(^{+}\)Treg converted cells were injected i.v. into naive recipients. EAE was induced 1 d after adoptive transfers.

FIGURE 1. Oral treatment with antibiotics significantly altered the numbers of gut bacteria. Reconstitution with both \textit{B. fragilis} strains restored the numbers. Oral treatment with antibiotics reduced the total numbers of bacteria present in the gut, compared with naive mice. Reconstitution with WT or APSA \textit{B. fragilis} restored those numbers (A). Depicted are the means \(\pm\) SD from three separate experiments (\(n = 9\) per group). \textit{Bacteroides}-selective media plates were used to confirm the colonization of the guts with \textit{B. fragilis} (B).
cytometry of Treg cell and DC experiments. The p values < 0.05 and < 0.01 are indicated.

Results
Reconstitution with PSA deficient B. fragilis restores the susceptibility to EAE

We have reported that oral antibiotic treatment can protect against CNS demyelination in a murine model of EAE (18). Four experimental groups were used throughout the studies: 1) mice treated orally with antibiotics for 1 wk, 2) mice treated with antibiotics and subsequently reconstituted with WT B. fragilis, 3) mice treated with antibiotics and subsequently reconstituted with ΔPSA B. fragilis, and 4) mice sham-treated with PBS. EAE was induced 1 wk after bacterial reconstitution or PBS sham-treated control. Oral antibiotic treatment significantly reduced the total bacterial numbers recovered (Fig. 1A), WT or ΔPSA B. fragilis persist and replicate similarly in vivo (14). The reconstitution of mice with either WT or ΔPSA B. fragilis restored the number of detectable bacteria (Fig. 1A). Bacteriologic culture of fecal samples in Bacteroides selective media showed that the treatment with antibiotics reduced the Bacteroides spp. counts when compared with naive mice whereas oral administration of WT or ΔPSA B. fragilis resulted in effective reconstitution of the gut (Fig. 1B).

We examined whether reconstitution of mice with WT or ΔPSA B. fragilis confers protection against EAE (18, 19). Oral treatment with antibiotics reduces EAE severity and cumulative scores, and it delays the clinical onset (18) (Fig. 2A, Table I). Reconstitution of antibiotic-treated mice with ΔPSA B. fragilis reversed protection by restoring susceptibility to disease. Mice reconstituted with the intact strain of B. fragilis were protected against disease and demonstrated reduced clinical severity when compared with the PBS control group or ΔPSA B. fragilis-reconstituted mice (Table I). There was no significant difference in the protection between treatment with antibiotics and antibiotic treatment followed by reconstitution with WT B. fragilis (Table I). In contrast, oral antibiotic treatment followed by reconstitution with ΔPSA B. fragilis resulted in clinically significant disease severity consistent with that observed in the PBS control group.

Cytokine analysis of CNS tissue derived from WT B. fragilis-reconstituted mice versus either control PBS-treated or ΔPSA B. fragilis-reconstituted mice was compared (Fig. 2B). T-box transcription factor Tbx21 (T-bet) and IFN-γ, both indicators of Th1 polarization, were reduced in mice treated with antibiotics compared with PBS treated mice, whereas GATA-3 and IL-13 expression were enhanced. There was a reduction in RORγt and IL-17–relative expression in mice treated with antibiotics, and in

Table I. Reconstitution with ΔPSA B. fragilis restores EAE susceptibility in mice previously treated with antibiotics

<table>
<thead>
<tr>
<th>Treatmenta</th>
<th>EAE (Mice/Total)</th>
<th>Day of Clinical Onset</th>
<th>Maximum Clinical Score</th>
<th>Cumulative Scoreb</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>12/12</td>
<td>8.1 ± 0.9</td>
<td>5</td>
<td>64.2</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>10/12</td>
<td>9.9 ± 0.9*</td>
<td>2</td>
<td>12.5**</td>
</tr>
<tr>
<td>WT B. fragilis reconstituted</td>
<td>11/12</td>
<td>9.7 ± 1.1*</td>
<td>3</td>
<td>17.1**</td>
</tr>
<tr>
<td>ΔPSA B. fragilis reconstituted</td>
<td>12/12</td>
<td>8.2 ± 0.8***</td>
<td>5</td>
<td>59.3****</td>
</tr>
</tbody>
</table>

aSJL mice were treated with PBS, antibiotics, antibiotics and reconstitution with WT B. fragilis, and antibiotics and reconstitution with ΔPSA B. fragilis by oral gavage. Seven days after treatment, EAE was induced.

bThe cumulative scores were calculated as the sum of all EAE clinical scores divided by the total number of mice per group (three experiments are combined).

*p < 0.05, Kruskal-Wallis test followed by Dunn’s multiple comparison test, for PBS versus antibiotics and PBS versus WT B. fragilis; **p < 0.01, Kruskal-Wallis test followed by Dunn’s multiple comparison test, for PBS versus antibiotics and PBS versus WT B. fragilis; ***p < 0.05, for antibiotics versus ΔPSA B. fragilis and WT B. fragilis versus ΔPSA B. fragilis; ****p < 0.05, for antibiotics versus ΔPSA B. fragilis and WT B. fragilis versus ΔPSA B. fragilis.
WT *B. fragilis*-reconstituted mice when compared with PBS-treated mice. Reconstitution with WT *B. fragilis* in EAE mice enhanced GATA-3, SMAD3, and IL-10 compared with PBS control mice. The profile of mice reconstituted with ∆*PSA B. fragilis* showed no alterations of cytokine relative expression compared with PBS control mice. Enhanced RORγt, IL-17, and T-bet levels and reduced GATA-3, IL-10, and IL-13 levels of expression were detected in ∆*PSA B. fragilis*-reconstituted mice versus mice treated with antibiotics. When compared with WT *B. fragilis*, ∆*PSA B. fragilis*-reconstituted mice showed enhanced RORγt and IL-17 as well as reduced SMAD-3 and IL-10.

Previous studies from our laboratory have demonstrated changes in cytokine production by cells in the cervical LNs of mice after oral antibiotic treatment (18). IL-13 levels were increased in mice treated with antibiotics compared with mice reconstituted with WT or ∆*PSA B. fragilis* (Fig. 3). The reconstitution with either

FIGURE 3. PSA-deficient *B. fragilis* reconstitution enhances production of IL-17 and IL-6 in cervical LN compared with mice treated with antibiotics. By contrast, colonization with WT *B. fragilis* enhanced the levels of IL-10 and IL-12 (p40). Both strains increased the levels of IFN-γ compared with mice treated with antibiotics. IL-10, GATA3, and SMAD3 levels were increased in WT *B. fragilis* compared with ∆*PSA B. fragilis*-reconstituted mice, whereas IL-6 was reduced. IL-13 levels were enhanced in mice treated with antibiotics compared with the rest of experimental groups. Cytokines released to the culture media were detected by Luminex (A), and relative expressions of GATA3, SMAD3, and IL-12 (p40) were detected by PCR (B). Depicted are the means ± SD from all data combined of three experiments (*n* = 8 per group). *p* < 0.05; **p** < 0.01.

FIGURE 4. *Bacteroides* reconstitution maintains the enhanced frequencies of Treg cells found in mice treated orally with antibiotics. Flow cytometry was used to compare the frequencies of Foxp3^+^CD25^-^ among total CD4^+^ T cells (A, B) gated on cervical LNs in PBS-treated mice, mice treated with antibiotics, and mice reconstituted with either WT or ∆*PSA B. fragilis*, 0, 3, and 7 d after treatments, and CD25^-^ T cells or CD25^-^CD4^-^ T cells (C, D) 7 d after bacterial reconstitution. Depicted are results for a representative experiment (A, C) and the means for a representative experiment from two separate experiments (*n* = 8 per group; B, D).
WT or ΔPSA *B. fragilis* induced the production of IFN-γ, compared with mice treated with PBS and with antibiotics. Whereas treatment with antibiotics significantly reduced the levels of IL-17 and IL-6 produced compared with PBS treatment (18), reconstitution with ΔPSA *B. fragilis*, but not WT *B. fragilis*, significantly augmented those levels. WT *B. fragilis* reconstitution induced enhanced levels of IL-10, IFN-γ, IL-12 (p40) in cervical LN cells when compared with mice treated with antibiotics. IL-10 production and GATA3- and SMAD3-relative expressions in cells obtained from WT *B. fragilis*-reconstituted mice were also enhanced, compared with mice reconstituted with ΔPSA *B. fragilis* and PBS-treated mice. Although reductions in TNF-α and MCP-1 were observed in mice treated with antibiotics and reconstituted with WT *B. fragilis*, the differences were found to be not significant compared with PBS control mice and mice reconstituted with ΔPSA *B. fragilis* (not shown). No significant changes were observed in IL-4, IL-5, MIP-1α, or MIP-1β levels (not shown).

EAE regulation by PSA exposure depends on Treg cells

We assessed whether PSA expression in *B. fragilis* could enhance the percentages of Foxp3+ Treg cells. Oral treatment with antibiotics increased the frequency of Foxp3+CD25+ in CD4+ T cells isolated from the cervical LN (18). No significant differences were observed in the frequency of Foxp3+CD25+ Treg cells detected in mice reconstituted with either WT or ΔPSA *B. fragilis*, compared with mice treated with antibiotics (Fig. 4A, 4B). The frequency of Foxp3+ was enhanced in the CD25high versus the total CD25+ fraction of CD4+ T cells in all groups (Fig. 4C, 4D). Mice subjected to bacterial reconstitution showed similar frequencies of Foxp3+Treg cell populations in the GALT (Peyer’s patches and mesenteric LN) and spleens to those observed in antibiotic-treated mice (Supplemental Fig. 1). In vivo CD25+ cell depletion demonstrated a significant effect on the protection after reconstitution with WT *B. fragilis* and in mice treated with antibiotics, as shown before (18) (Fig. 5, Table II). Disease susceptibility after reconstitution with WT *B. fragilis* or in mice rendered susceptible after oral antibiotic treatment was enhanced when CD25+ T cells were depleted. Of interest was the increased severity of disease following reconstitution with WT *B. fragilis* compared with mice treated with antibiotics (Table II). As shown in both Fig. 2 and Table I, no significant differences were observed in the severity of EAE in mice reconstituted with ΔPSA *B. fragilis* and in PBS-treated mice. Depletion of CD25+ cells induced equivalent increases in the cumulative disease indexes and mortality of both experimental groups.

ΔPSA *B. fragilis* reduces T cell conversion into Foxp3+ Treg cells

We further analyzed the role of PSA in the acquisition of regulatory phenotypes by CD4+ T cells. We previously showed that alteration of the gut flora with antibiotics educated CD103+DCs to enhance the conversion of CD4+ T cells into Foxp3+ Treg cells (18). To compare the effect of *B. fragilis* recolonization in the induction of regulatory phenotypes of T cells, CD103+CD11chigh DCs were sorted from the cervical LNs of mice treated with antibiotics and from mice reconstituted with either WT or ΔPSA *B. fragilis*. DCs

Table II. In vivo neutralization of CD25+ cells exacerbates EAE severity in protected mice

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>EAE (Mice/Total)</th>
<th>Day of Clinical Onset</th>
<th>Maximum Clinical Score</th>
<th>Mortality (Dead/Total)</th>
<th>Cumulative Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS/IgG</td>
<td>8/8</td>
<td>9.1 ± 0.6</td>
<td>5</td>
<td>2/8</td>
<td>56.2*</td>
</tr>
<tr>
<td>PBS/CD25</td>
<td>8/8</td>
<td>7.8 ± 0.6**</td>
<td>5</td>
<td>6/8</td>
<td>95.2</td>
</tr>
<tr>
<td>Antibiotics/IgG</td>
<td>8/8</td>
<td>10.6 ± 0.5</td>
<td>2</td>
<td>0/8</td>
<td>11.7*</td>
</tr>
<tr>
<td>Antibiotics/CD25</td>
<td>8/8</td>
<td>8.8 ± 0.6**</td>
<td>5</td>
<td>4/8</td>
<td>65.3</td>
</tr>
<tr>
<td>WT *B. fragilis/IgG</td>
<td>8/8</td>
<td>11.1 ± 0.4</td>
<td>3</td>
<td>0/8</td>
<td>15.4*</td>
</tr>
<tr>
<td>WT *B. fragilis/CD25</td>
<td>8/8</td>
<td>8.5 ± 0.5**</td>
<td>5</td>
<td>4/8</td>
<td>82.5**</td>
</tr>
<tr>
<td>ΔPSA *B. fragilis/IgG</td>
<td>8/8</td>
<td>8.6 ± 0.5**</td>
<td>5</td>
<td>3/8</td>
<td>61.2</td>
</tr>
<tr>
<td>ΔPSA *B. fragilis/CD25</td>
<td>8/8</td>
<td>8.1 ± 0.9</td>
<td>5</td>
<td>6/8</td>
<td>98.7***</td>
</tr>
</tbody>
</table>

*SJL mice were treated with PBS, antibiotics, antibiotics and reconstitution with WT *B. fragilis*, and antibiotics and reconstitution with ΔPSA *B. fragilis* by oral gavage. Seven days after treatment, EAE was induced. Four and 2 d before prior disease induction, mice were treated with 0.3 mg anti-CD25 Ab or rat IgG isotype control.

The cumulative scores were calculated as the sum of all EAE clinical scores divided by the total number of mice per group (two experiments are combined).

*p < 0.01, Kruskal-Wallis test followed by Dunn’s multiple comparison test, for PBS/IgG versus PBS/CD25, PBS/IgG versus Antibiotics/CD25; and PBS/IgG versus WT *B. fragilis/IgG.***p < 0.05, Kruskal-Wallis test followed by Dunn’s multiple comparison test, for PBS/IgG versus PBS/CD25, Antibiotics/IgG versus antibiotics/CD25, and WT *B. fragilis/IgG versus WT *B. fragilis/CD25. ###p < 0.05, for WT *B. fragilis/IgG versus ΔPSA *B. fragilis/IgG. *******p < 0.01, for antibiotics/CD25 versus WT *B. fragilis/CD25 and antibiotics/CD25 versus ΔPSA *B. fragilis/CD25.
were cocultured in anti-CD3 Ab precoated plates with splenic CD4+CD25− (∼10% Foxp3+) T cells in the presence of PBS or purified PSA (100 μg/ml), or with RA (4 nM) and TGF-β (5 ng/ml). Foxp3 acquisition by CD4+ T cells was measured by flow cytometry. Depicted are (A) the results from a representative experiment and (B) the combination of all data (mean ± SD; n = 6 per group). *p < 0.05; **p < 0.01.

FIGURE 6. CD103+ DCs of PSA-deficient *B. fragilis* have reduced ability to induce Foxp3+ Treg cell conversion in vitro. DCs were harvested from cervical LNs of mice treated with antibiotics, and mice reconstituted with either WT or ΔPSA *B. fragilis* and sorted into CD103+CD11c+ DCs. Cells were cocultured with CD4+CD25− (∼10% Foxp3+) T cells sorted from spleens of naive mice in the presence of PBS, purified PSA (100 μg/ml), or with RA (4 nM) and TGF-β (5 ng/ml). Flow cytometry was used to compare the conversion rates of CD4+CD25− (∼10% Foxp3+) T cells into Foxp3+ cells. A) The column graph represents the combined results (n = 8 per group) for the frequency of Foxp3+ cells. The TGF-β concentrations are represented in the horizontal axes. *p < 0.01. B) The column graph represents the combined results (n = 8 per group) for the frequency of Foxp3+ cells. The TGF-β concentrations are represented in the horizontal axes. *p < 0.01. C) IFN-γ, IL-17, IL-10, and IL-13 cytokines were measured by specific ELISA in the supernatants of Foxp3+ converted cells upon stimulation with 5 ng/ml of TGF-β (n = 8 per group). *p < 0.01. D) Foxp3+ converted cells after stimulation with 5 ng/ml of TGF-β were adoptively transferred (1 × 105 cells per mouse) into naive recipient mice, and EAE was induced one day later. Depicted are the combined results from two separate experiments (n = 8, per group). *p < 0.01.
reconstituted mice showed enhanced T_{reg} conversion rates compared with cells obtained from mice reconstituted with ΔPSA B. fragilis. mice treated with antibiotics, and PBS-treated mice, when cultured with 0.5 and 5 ng/ml TGF-β. Conversion rates were significantly enhanced in all groups when TGF-β and RA approached the optimal concentration (Supplemental Fig. 2) (25).

We compared the capacity of these converted Foxp3^{+}T_{reg} cells to protect against EAE (Fig. 7D). Cells cultured with 5 ng/ml TGF-β were collected after 4 d and adoptively transferred into naïve recipient mice. Cells converted from WT B. fragilis-reconstituted mice protected against EAE induction, whereas no protection was observed in cells converted from PBS, mice treated with antibiotics, or ΔPSA B. fragilis reconstituted mice. Cells converted from WT B. fragilis-reconstituted mice produced significantly increased levels of IL-10 compared with PBS-treated mice, mice treated with antibiotics, and ΔPSA B. fragilis-reconstituted mice; they produced a modest but significant increase in TGF-β compared with ΔPSA B. fragilis-reconstituted mice (Fig. 7C). No significant differences in the production of IFN-γ, IL-17, IL-6, and IL-13 were observed.

Discussion
Altersations of the gut commensal bacteria populations by oral treatment with antibiotics can influence the development of EAE (18, 19). We now demonstrate that the reconstitution of mice with B. fragilis deficient in the production of the zwitterionic capsular PSA restores disease susceptibility in mice that had been rendered resistant to disease after treatment with oral antibiotics. Reconstitution with both B. fragilis strains similarly restored the numbers of detectable bacteria, which were significantly reduced after oral treatment with antibiotics. It has been shown that both WT and ΔPSA B. fragilis persist and replicate equally in vivo (14), suggesting that it was PSA and not the number nor strain of B. fragilis that was responsible for disease protection or susceptibility.

Oral treatment with antibiotics enhanced the frequency of Foxp3^{+}T_{reg} cells within the cervical LN and reduced Th17 responses (18). The alterations of Th17 responses upon oral treatment of antibiotics have been recently confirmed by others (26, 27). After antibiotic treatment, reconstitution with either WT or ΔPSA B. fragilis resulted in a similar number and frequency of T_{reg} cells. In MS, the in vitro conversion rates of CD4^{+} T cells into T_{reg} cells are significantly reduced in MS patients compared with healthy controls (28). Moreover, functional suppression appears to be impaired (29). CD4^{+} T cells obtained from PSA-producing B. fragilis-reconstituted mice more efficiently converted into Foxp3^{+}T_{reg} cells, with increased IL-10 production and enhanced protective potency after adoptive transfer.

Our results suggest that deficient PSA production could influence the functional role of DCs and Foxp3^{+}T_{reg} cells induced by B. fragilis. Prior studies have demonstrated that CD4^{+} T cell activation by PSA is dependent on the presentation of the Ag by CD11c^{+} DCs (30). Foxp3^{+}T_{reg} cell conversion by CD103^{+} DCs purified from PSA-deficient B. fragilis-reconstituted mice was significantly reduced compared with DCs from PSA-producing B. fragilis. Foxp3^{+}T_{reg} cell conversion studies showed enhanced conversion rates of CD4^{+} T cells obtained from WT B. fragilis-reconstituted mice. SMAD3 was significantly increased in WT B. fragilis-reconstituted mice, and IL-6 was substantially reduced compared with ΔPSA B. fragilis-reconstituted mice. Differentiation of Th17 cells requires TGF-β and IL-6, whereas TGF-β is also required for T_{reg} cell induction in the absence of IL-6 (31). The differences observed in the conversion rates could be due to the potential capability of WT B. fragilis CD4^{+} T cells to enhance TGF-β in cultures that could facilitate their conversion into Foxp3^{+}T_{reg} cells.

PSA may influence a distinct pathway involved in disease protection, as suggested by our experiments of T_{reg} neutralization. CD25^{+} cell depletion exacerbated EAE in all groups, but the enhancement of disease severity was significantly higher in mice treated with antibiotics compared with WT B. fragilis-reconstituted mice. Other subpopulations of regulatory cells such as NKT cells may participate in the protection against disease-induced treatment with oral antibiotics (19). Recent observations from our laboratory suggest that B cells could be important in this protective response (32). IL-13 production was reduced in mice reconstituted with WT B. fragilis compared with mice treated with antibiotics, and only IL-10–producing T_{reg} cells converted from Foxp3^{+} CD4^{+} T cells of WT B. fragilis-reconstituted mice protected against EAE. Foxp3^{+}T_{reg} cells that were derived from CD4^{+} T cells of PSA-deficient B. fragilis-reconstituted mice failed to protect against the disease. We recently demonstrated that a highly purified preparation of PSA is protective against EAE in conventional mice and that this protection is completely abrogated in IL-10–deficient mice, suggesting an important role of this cytokine in the PSA-induced control of the disease (22).

The presence or absence of PSA could determine protective or pathogenic outcomes in EAE. WT or ΔPSA B. fragilis reconstitution induced production of IFN-γ, when compared with mice treated with PBS and with antibiotics; however, IL-10 production was enhanced only after reconstitution with WT B. fragilis, whereas PSA-deficient B. fragilis reconstitution induced enhanced levels of IL-6. The imbalance created by alterations of PSA expression within the gut lumen may lead to peripheral systemic autoimmune disorders, such as EAE or human MS. In the absence of PSA, the human commensal B. fragilis can no longer regulate immune homeostasis, leading to autoimmune disease of the intestine, as described recently (21) and as reported in this study in the CNS. Our previous (18, 22, 32) and present studies suggest that differing compositions of gut microbiota could regulate the balance between protection and disease induction in MS and may offer a novel therapeutic approach for disease intervention.

Acknowledgments
We thank Dr. Azizul Haque, Dr. Jacqueline Y. Channon-Smith, Marc Christy, Yan Wang, John DeLong, Kathleen Smith, and Alan J. Bergeron for technical support and critical review of the manuscript.

Disclosures
The authors have no financial conflicts of interest.

References