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FIGURE 4. Astrocytes strongly express IL-
15 in MS lesions. CNS tissue from one control
(block 1: A-F) and lesions from two patients
with MS (block 5: F-J; block 10: K-O) were
stained for GFAP (green: A, F, K) and IL-15
(red: B, G, L) and merge of GFAP and IL-15 (C,
H, M). D, I, and N, Isotype controls. E, J, and O
show a magnified view of the cell in the white
box. Several IL-15-positive cells were astro-
cytes, as indicated by the yellow overlay in H,
M, J, and O. White arrows indicate examples of
astrocytes colabeled for IL-15. Orange arrow-
heads indicate cells in both controls and MS
tissue samples that expressed IL-15 but were
not astrocytes. Pictures shown are z stacks of
five to eight 0.5-wm-thick layers and are rep-
resentative of five fields taken from each section
of three controls and seven MS donors. Original
magnification X400. Scale bar, 50 pm.

the CNS parenchyma of all the MS lesions examined (Fig. 6D)
and in perivascular cuffs (Fig. 6G). Moreover, CD8 T cells were
observed outside of blood vessels, only where cells displayed
evident IL-15 expression (Fig. 6F, 61). In control sections, no CD8
T lymphocytes could be observed in the CNS parenchyma, and
only rare CD8 T lymphocytes were associated with blood vessels
(Fig. 6A).

Discussion

Our study demonstrates that human astrocytes in a proinflamma-
tory milieu express sufficient surface IL-15 so as to enhance effector
functions of Ag-specific CD8 T lymphocytes. Although IL-15
mRNA and protein expression in murine and human CNS cells has
been reported (33—-36), our results are the first, to our knowledge, to
demonstrate that surface IL-15 expressed by human glial cells is
functional and acts on human CD8 T lymphocytes. Our in situ data
specifically document the prominent expression of IL-15 in MS
lesions. In addition, CD8 T lymphocytes are localized to areas
with abundant IL-15-expressing cells in MS lesions.

In our in vitro studies, treatment with single cytokines (IFN-vy,
IL-1B, or TNF) did not alter IL-15 levels on astrocytes, although
these treatments did increase MHC-I expression (Fig. 1D). We
conclude that such treatments did not trigger either the appropriate
signaling cascade or amount of intracellular signaling to in-
duce surface IL-15 expression (51). However, IFN-y + TNF and
IFN-vy + IL-1B combinations significantly increased the propor-
tion of astrocytes expressing surface IL-15, and these cytokines
have been shown to induce other immune mediators in human
primary astrocytes (52, 53). Activated T lymphocytes and mac-
rophages/microglia, abundantly present in MS lesions (1), are
classic in vivo sources of these cytokines (1, 54-57).

Our in vitro results demonstrate that activated human astro-
cytes augment the expression of multiple effector molecules (gran-
zyme B, perforin, NKG2D) and MHC-I-restricted Ag-specific
cytotoxicity by CD8 T lymphocytes in a contact-dependent
manner (Fig. 3). Thus, local IL-15 may enhance the propensity
of parenchymal CD8 T cells to lyse MHC-I-expressing target
cells such as oligodendrocytes, the cellular target of MS demye-
lination. Our previous work demonstrates that oligodendrocytes in
MS lesions express NKG2D ligands (40). Moreover, we have
shown that the same cytokine combinations (e.g., IFN-y + TNF)
that increase surface IL-15 on human astrocytes, leading to ele-
vated NKG2D and lytic enzyme expression by CD8 T lympho-
cytes, augment NKG2D ligands on human oligodendrocytes (40).
Thus, the concomitant presence within MS lesions of IL-15—
expressing astrocytes and NKG2D ligand-expressing oligoden-
drocytes may enhance CD8 T lymphocyte effector functions and
consequently exacerbate the CD8 T lymphocyte-mediated killing
of oligodendrocytes. Supernatants from activated astrocytes, or
insertion of a transwell separating both cell types, did not repro-
duce the coculture results. Cells from both immune (monocytes
and dendritic cells) (21, 58—-60) and nonimmune origin (synovial
fibroblasts and endothelial cells) (26, 61, 62) have previously been
shown to activate T lymphocytes via contact-dependent IL-15-
mediated mechanisms. Our functional studies were conducted
using fetal astrocytes, as we are unable to isolate adult astrocytes
in sufficient number or purity. However, our immunohistochem-
istry data demonstrate that human adult astrocytes express sig-
nificant amounts of IL-15, especially in MS lesions (Fig. 4).

Our immunohistochemistry studies show that IL-15 expres-
sion is significantly increased in MS lesions compared with con-
trols and that astrocytes are major sources of these augmented
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FIGURE 5. Microglia/macrophages express IL-15 in CNS tissue. CNS tissue from one control (block 1: A—D) and two distinct patients with MS (block 9:
E-H, block 4: I-L) containing demyelinated areas were stained for Iba-1 (green: A, E, I), IL-15 (red: B, F, J), and TO-PRO. D, H, and L, Isotype controls.
Several Iba-1" cells visible in MS lesions (E, I) expressed detectable levels of IL-15 (F, J), but non-Iba-1 cells also expressed IL-15 (G). White arrows
indicate examples of microglia/macrophages colabeled for IL-15, white arrowheads point to IL-15" cells that are not microglia/macrophages, and orange
arrowheads indicate microglia/macrophages that do not express IL-15. Pictures shown are representative of five fields taken from each section of three
controls and seven blocks from six MS donors. Original magnification X400. Scale bar, 50 wm.

cytokine levels (Fig. 4). Moreover, enhanced IL-15 levels were
observed in both acute (blocks 4-6 and 9) and subacute/chronic
(blocks 7, 8, and 10) MS lesions, suggesting that this cytokine
is upregulated for extended periods of time within the inflamed
CNS during MS. Astrocytes are the most abundant glial cell type
within the CNS. Moreover, these cells are strategically localized at
the blood-brain barrier and thus can interact with incoming im-
mune cells, including CD8 T lymphocytes as soon as they enter
the CNS. Several functions have been attributed to astrocytes (53).
Our data also indicate that the numerous macrophages and micro-
glia in MS lesions provide IL-15 to infiltrating immune cells, such
as CD8 T lymphocytes, in the CNS parenchyma. Moreover, sev-
eral studies have documented the capacity of human monocytes/
macrophages for providing functional IL-15 to T cells (20, 23),
supporting the notion that CNS macrophages and most likely
microglia do the same. In line with our findings, astrocytes have
been shown to be the main source of IL-15 in LPS-injected
mice, with reactive microglia being an additional source (38).
Dendritic cells, found mainly in the perivascular spaces in MS
lesions, could serve as an additional source of IL-15 (21). Finally,
CDS8 T cells detected in the parenchyma and in perivascular cuffs

of MS lesions were in close proximity to IL-15—expressing cells
(Fig. 6).

Blockade of systemic IL-15 (or IL-15 signaling receptor) in
animal models featuring an inflammatory autoimmune response
(e.g., theumatoid arthritis, diabetes, psoriasis) has been shown
to decrease disease development and severity (63—-66). Recently,
Gomez-Nicola and colleagues (67) observed aggravated experi-
mental autoimmune encephalomyelitis in IL-15 knockout mice
compared with wild-type littermates, although the maximum
clinical score (1.6) they obtained for wild-type animals was low
compared with other reports. However, because IL-15 null mice
displayed marked reductions in the numbers of NK and memory
CD8 T cells (68), indicating an abnormal immune system, inter-
pretations of the role IL-15 using these mice should be made with
extreme caution. Other groups have demonstrated that nonmicro-
glial CNS cells, especially astrocytes via NF-kB signaling, respond
to CNS inflammation and play a deleterious role in autoimmune
CNS inflammation during experimental autoimmune encephaylo-
myelitis (69, 70). We have previously shown that human astrocytes
upon TLR3 ligation produce chemokines and cytokines (i.e., IL-6)
(41) that can activate T cells. Our data assign a role to these cells
as stimulators of infiltrating CD8 T lymphocytes in the inflamed
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FIGURE 6. CD8 T lymphocytes are present in close vicinity to abundant
IL-15 in MS lesions. CNS tissue from one control (block 2: A—C) and two
patients with MS (block 6: D-F; block 9: G-I) were stained for CDS8 (green:
A, D, G), IL-15 (red: B, E, H), and TO-PRO (labeling the nuclei in blue). C,
F, and I, Merge of CD8, IL-15, and TO-PRO. Few CD8 T lymphocytes
were detected in controls, and they were not located in the parenchyma.
Numerous CD8 T lymphocytes were found in MS lesions close to IL-15—
positive cells, especially in perivascular cuffs (G—I) and in the parenchyma
(D-F). Pictures shown are representative of five fields taken from each
section of the three blocks from as many controls and seven blocks from six
MS donors. Original magnification X200. Scale bar, 75 wm.

CNS during MS. Moreover, we are currently investigating whether
other factors derived from astrocytes contribute in maintaining or
dampening T cell activation. Although not addressed in this study,
IL-15 could participate in other aspects of neuroinflammation given
its chemoattractive and prosurvival properties (71, 72). For example,
IL-15 has been previously shown to be a potent T cell chemo-
attractant during rheumatoid arthritis, resulting in enhanced T cell
migration to inflamed joints (73, 74). Its prosurvival properties could
contribute to aspects of neuroinflammation.

Studies in humans support a role for IL-15 in the target organs
of rheumatoid arthritis (26, 62, 74) and celiac disease (75-78). In
the latter, prolonged exposure of CD8 T lymphocytes to IL-15
in the inflamed gut epithelium greatly enhances their cytotox-
icity toward target cells. This was suggested to be a mechanism
at the basis of the tissue destruction observed in patients with
celiac disease. Our data support the proposal that a similar
mechanism could potentially be at work in the inflamed CNS
of patients with MS. In conclusion, we demonstrate that in the
target organ of MS pathogenesis, astrocytes via the production of
IL-15 contribute to perpetuating the activation of damaging CD8
T lymphocytes.
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