Regulation of Lentivirus Neurovirulence by Lipopolysaccharide Conditioning: Suppression of CXCL10 in the Brain by IL-10

Ferdinand Maingat, Serena Viappiani, Yu Zhu, Pornpun Vivithanaporn, Kristofer K. Ellestad, Janet Holden, Claudia Silva and Christopher Power

J Immunol 2010; 184:1566-1574; Prepublished online 30 December 2009;
doi: 10.4049/jimmunol.0902575
http://www.jimmunol.org/content/184/3/1566

Supplementary Material

http://www.jimmunol.org/content/suppl/2009/12/30/jimmunol.0902575.DC1

References

This article cites 66 articles, 13 of which you can access for free at:
http://www.jimmunol.org/content/184/3/1566.full#ref-list-1

Why The JI? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Regulation of Lentivirus Neurovirulence by Lipopolysaccharide Conditioning: Suppression of CXCL10 in the Brain by IL-10

Ferdinand Maingat,*1 Serena Viappiani,*1 Yu Zhu,* Pornpun Vivithanaporn,*1‡ Kristofer K. Ellestad,* Janet Holden,‡ Claudia Silva,‡ and Christopher Power*1,8

Lentivirus infections including HIV and feline immunodeficiency virus (FIV) cause neurovirulence, which is largely mediated by innate immunity. To investigate the interactions between neurovirulence and repeated conditioning by innate immune activation, models of lentivirus infection were exposed to LPS. Gene expression in HIV-infected (HIV+) and control (HIV−) patient brains was compared by real time RT-PCR and immunocytochemistry. Supernatants from mock and HIV-infected monocyte-derived macrophages exposed to LPS were applied to human neurons. HIV-infected (FIV+) and control (FIV−) animals were exposed repeatedly to LPS postinfection together with concurrent neurobehavioral testing, viral load, and host gene analyses. Brains from HIV+ individuals exhibited induction of CD3ε, CXCL10, and granzyme A expression (p < 0.05). Supernatants from HIV+ monocyte-derived macrophages induced CXCL10 expression in neurons, which was diminished by IL-10 treatment (p < 0.05). LPS-exposed HIV+ animals demonstrated lower plasma and brain viral loads (p < 0.05). Neuronal CXCL10 expression was increased in FIV+ animals but was suppressed by LPS exposure, together with reduced brain CD3ε and granzyme A expression (p < 0.05). In conjunction with preserved NeuN-positive neuronal counts in parietal cortex (p < 0.05), FIV+ animals exposed to LPS also showed less severe neurobehavioral deficits (p < 0.05). Repeated LPS exposures suppressed CXCL10 in the brain and ensuing T cell infiltration with a concomitant reduction in neurovirulence. Thus, innate immune chronic conditioning exerted beneficial effects on neurovirulence through suppression of a specific chemotactic factor, CXCL10, mediated by IL-10, leading to reduced leukocyte infiltration and release of neurotoxic factors. The Journal of Immunology, 2010, 184: 1566–1574.
Infection exacerbates the disease process. Indeed, early-life infections appear to reduce the occurrence and severity of some neurologic diseases such as multiple sclerosis (15, 16). In models of neurodegenerative diseases, repeated exposure to the bacterial cell wall constituent LPS accelerates the disease course (17, 18). Conversely, in other models of neurologic disease, in which LPS was applied chronically, the disease outcome was improved (19). Thus, LPS and other microbe-derived factors have varied effects on neurologic diseases, depending on the type of immune activator and several host factors including age, sex, and host response to the underlying disease.

Immunosuppressive lentivirus infections are frequently accompanied by systemic (opportunistic) infections (20), but the impact of these concurrent infections on neurologic disease remain uncertain. In this study, we investigated in vitro and in vivo models of lentivirus neuropathogenesis in which HIV- or FIV-infected cells or animals, respectively, were repeatedly exposed to LPS, and systemic variables together with neurologic outcomes were assessed. These studies showed that LPS exposure suppressed viral load in vivo and improved neurologic outcomes through a mechanism involving suppressed chemokine expression accompanied by reduced lymphocyte infiltration into the brain.

Materials and Methods

Virtues

Culture supernatants from feline PBMCs infected with an infectious neurovirulent molecular clone (FIV-Ch) served as sources of infectious FIV (21) for the in vivo experiments. Supernatants from human PBMCs infected with a neurotropic HIV-1 strain (HIV-1 SF162) was prepared similarly and used for in vitro infection experiments. Viruses were titrated by limiting dilution as previously reported (22).

Human brain samples

Human CNS tissue (frontal lobe) was collected at autopsy with consent and stored at −80°C from HIV-infected (HIV encephalitis, n = 2; toxoplasmic encephalitis [remote from lesion], n = 3) and noninfected (stroke, n = 2; sepsis, n = 3; leukemia, n = 2) control patients with consent. All HIV-infected individuals were AIDS-defined and died of AIDS-related causes. Controls comprised other neurologic diseases including Alzheimer’s disease, multiple sclerosis, and stroke (23, 24).

Animals and virus infection

Adult, specific-pathogen-free pregnant cats (queens) were housed according to Universities of Alberta and Calgary animal care facilities’ guidelines in agreement with Canadian Committee on Animal Care guidelines. All queens were negative for feline retroviruses (FIV, FeLV) by PCR analysis and serologic testing. At day 1 postnatal, animals were inoculated (right frontal lobe) with 200 μl FIV-Ch29 at 10^7 TCID50/ml using a 30-gauge needle and syringe via intracranial injection in accordance with Canadian Committee on Animal Care guidelines, as described previously (22, 25). Control animals (FIV−) received heat-inactivated virus. Adolescent animals were weaned at 6 wk, and at weeks 7, 9, and 11 postinfection, LPS (Sigma-Aldrich, St. Louis, MO) 5 mg/kg was administered by i.p. injection to nine of the animals (four uninfected and five FIV-infected). Animals were assigned to four experimental groups—mock (FIV− and FIV+PBS (n = 5), FIV−/LPS (n = 4), FIV+/PBS (n = 5), and FIV+/LPS (n = 5)—and monitored for 12 wk postinfection, during which time changes in body weight and neurobehavioral tests were conducted and samples were taken for analyses of CD4+ and CD8+ T cell populations. At 12 wk the animals were euthanized by pentobarbital overdose; brain and plasma were harvested at this time. Samples were frozen immediately at −80°C for subsequent protein or total RNA extractions. Brain tissue from the left hemisphere was fixed in 4% buffered (pH 7.4) paraformaldehyde for immunocytochemical analysis.

Neurobehavioral performance

Beginning at 6 wk, neurobehavioral performance was measured weekly using a scale that assessed the acquisition of motor skills and social behaviors over time, as previously described (22). The age (weeks) was recorded when each developmental milestone was manifested; these milestones included play interaction, walking, running, air righting, the ability to walk along a plank, and blink reflex (22). In addition, the height to which an animal jumped or pursued a moving light on a wall, was measured. Maximum jumping height was scored as an average of a minimum of 3 trials during which a laser pointer was set at a fixed height on a wall to facilitate the jumping trials. Maximum jump height was the distance of the highest point reached by any body part with the hind legs leaving the ground, with the ground as the reference point. Five different parameters, including activity level, play interaction, motor ability, inquisitiveness, and general health, were scored by using the Feline Behavioral Scale (22, 26), from which a mean deficit score was calculated for each group. Z scores were calculated for each task and within groups, and averages were used to derive mean deficit scores.

Flow cytometric analysis

PBMCs were isolated from the blood of FIV− and FIV+ animals with or without LPS treatment as previously reported (27). PBMCs were labeled with anti-feline CD4 or CD8 mAbs and FITC-conjugated goat antimouse IgG1 Ab was used a secondary. Omitting the primary Ab served as a control. FACS analysis was performed using the FACS Canto (BD Biosciences, San Jose, CA) flow cytometer. In addition, human PBMCs were analyzed in terms of cellular proliferation using CFSE with and without concurrent HIV-1 (SF162) and LPS exposure. Cells (5 × 10^6) were analyzed for each sample.

Plasma and neural tissue viral load

Using a quantitative real time RT-PCR protocol in which the oligonucleotide primers were derived from the FIV pol gene, the number of copies of viral RNA in plasma and brain tissue (per microgram of RNA) was determined (28).

Host gene analysis by real-time RT-PCR

First-strand cDNA was synthesized by using aliquots of 1 μg total RNA prepared from cortex and basal ganglia (experimental animals) or from white matter (human) together with superscript II reverse transcriptase (Invitrogen, Carlsbad CA) and random primers (29). Specific genes were quantified by real-time PCR using i-Cycler IQ system (Bio-Rad, Mississauga, Ontario, Canada). cDNA prepared from total RNA derived from plasmas and brain tissues was diluted 1:1 with sterile water, and 5 μl was used as a template per PCR reaction. The primers used in the real time PCR are summarized in Table I. Semi-quantitative analysis was performed by monitoring, in real time, the increase of fluorescence of the SYBR Green dye on the Bio-Rad detection system, as previously reported (30), and expressed as relative fold change compared with mock-infected samples.

Cell culture

SK-N-SH human neuroblastoma (hNB) cells were obtained from American Type Culture Collection (Manassas, VA) and were seeded and grown in Eagle’s MEM supplemented with 10% FBS (Life Technologies, Burlington, Ontario, Canada). Prior to use, hNB cells were differentiated in growth media supplemented with 1 mM dibutyryl cAMP (Sigma-Aldrich, St. Louis, MO) 3 d at 37°C, 10% CO2. Primary human fetal neurons (hFNs) were obtained in accordance with the University of Alberta Ethics committee, prepared as previously reported (31), and cultured in polyornithine-coated (Sigma-Aldrich) plates in serum-free AIM-V (FBS; Life Technologies) (23). Human monocytic-derived macrophages (hMDMs) were prepared from healthy HIV-seronegative controls by initially isolating PBMCs on a Ficoll gradient and plastic adherence, and thereafter maintained in RPMI (Life Technologies) supplemented with 10% L929 medium and 20% FBS (23). hMDMs were cultured at 37°C, 10% CO2 for 1 wk before use. Mock-infected (HIV−) cells served as controls.

LPS exposure to hMDMs

Human MDMs—mock or HIV-infected—were exposed to LPS (100 ng/ml; Sigma-Aldrich) or PBS in growth media 7 d postinfection. At 3, 6, and 9 d after initial LPS exposure, half of the culture supernatant was collected and replaced with fresh media supplemented with LPS (100 ng/ml). A reverse transcriptase assay was performed on the harvested supernatants to monitor levels of viral release, as previously reported (23). The supernatants harvested at days 3, 6, and 9 were applied to hNBs and hFNs for 48 h at 37°C, 5% CO2. Cultures were then fixed and processed for in-cell Western of β-tubulin immunoreactivity and DAPI staining.

MDM-derived supernatant application to hNB and hFN cells

Human MDMs were infected with HIV-1 (SF162) or mock-infected. Initial infection of MDM was achieved by a 6-h virus exposure followed by a media change every 3 d for a period of 7 d at 37°C, 5% CO2.
Supernatants were then harvested and applied to cultured hNB and hFN cells for 6 or 48 h at 37°C, 5% CO₂. Cultures were then fixed and processed in in-cell Western of β-tubulin and CXCL10 immunoreactivity, followed by DAPI staining.

Reverse transcriptase assay
Reverse transcriptase (RT) activity in culture supernatants was measured using a protocol described previously (32). Ten microliters of culture supernatant was cleared of cellular debris by high-speed centrifugation and incubated with 40 μl reaction mixture containing [α-32P]TTP for 2 h at 37°C. Samples were blotted on DE81 Ion Exchange Chromatography Paper (Whatman International, Maidstone, U.K.) and washed three times for 5 min in 2× SSC and twice for 5 min in 95% ethanol (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate). RT levels were measured by liquid scintillation counting. All assays were performed in duplicate and a minimum of two times.

IL-10 treatment of neurons
Cultures of hNB and hFN cells were pretreated in growth media supplemented with recombinant human IL-10 (Peprotech, Rocky Hill, NJ) or PBS for 3 and 16 h. Mock (HIV−) or HIV-infected (HIV+) supernatants were applied to cultured hNB and hFN cells for 48 h at 37°C, 5% CO₂, followed by processing of cultures for in-cell Western analyses of CXCL10 immunoreactivity.

In-Cell Western/DAPI staining
hNB cells and primary hFNs were cultured for 24 h with supernatants from HIV-mock or HIV-infected MDMs at 37°C, 10% CO₂. An in-cell Western ELISA (LI-COR, Lincoln, NE) using Abs against β-tubulin or CXCL10 was used to assess neuronal viability and CXCL10 expression, respectively. After treating hFNs and hNBs with MDM-derived supernatants, cells were fixed in 2% formalin, washed in PBS, permeabilized with 0.5% Triton X-100 in PBS, and blocked in LI-COR blocking buffer. Fixed cells were incubated overnight with anti-β-tubulin (1/800; Sigma-Aldrich) and CXCL10 (1/150; R&D Systems, Minneapolis, MN) Abs, washed, and incubated with secondary Alexafluor 680 (Invitrogen, Burlington, Ontario, Canada) or IRDye 800 (Rockland, Gilbertsville, PA) conjugated Abs, respectively. After the final washing, neuronal viability and CXCL10 induction were quantified using an Odyssey Infrared Imaging System (LI-COR). Fixed cells were exposed to 0.01 mg/ml DAPI stain (Molecular Probes, Eugene, OR) for 30 min at room temperature, followed by three washes in PBS. After drying, DAPI fluorescence (excitation at 360 nm) was quantified using Gen 5 software on a Synergy HT Microplate Reader (Biotek, Winooski, VT).

Immunodetection in tissue sections
Immunohistochemical and immunofluorescent labeling was performed using 6-μm, paraffin-embedded serial human and feline brain sections, respectively, prepared as previously described (33). Coronal brain sections were deparaffinized and hydrated using decreasing concentrations of ethanol. Ag retrieval was performed by boiling the slides in 0.01 M trisodium citrate buffer, pH 6.0, for 10 min. Sections were blocked in PBS containing 10% normal goat serum, 2% BSA, and 0.1% Triton X-100 overnight at 4°C. Afterward, feline brain sections were incubated overnight at 4°C with Abs against ionized calcium binding adaptor molecule 1 (Iba-1; 1:200; Wako, Tokyo, Japan), neuronal nuclei (NeuN) Ag (1:200; Chemicon International, Temecula, CA), CXCL10 (1:100; R&D Systems, Minneapolis, MN), and IL-10 (1:100; Biologend, San Diego, CA); they were then washed in PBS and incubated with Cy3, Alexa 488, or Alex 680 conjugated goat anti-rabbit or mouse (1:500 dilution; Molecular Probes) for 1 h at room temperature in dark followed by repeated washing in PBS. Feline sections were mounted with Gelvatol before viewing. Human brain sections were incubated overnight at 4°C with Abs against CD3ε (1:100; Abcam, Cambridge, MA), CXCL10 (1:100; R&D Systems), and IL-10 (1:100; Biologend), washed in PBS, incubated with biotin-conjugated goat Abs followed by avidin-biotin-peroxidase amplification (1:500 dilution; Vector Laboratories, Burlingame, CA) for 2 h at room temperature, and washed again in PBS. Subsequent immunoreactivity was detected by 3,3′-diaminobenzidine tetrachloride staining (Vector Laboratories). All sections were examined with a Zeiss Axioskop 2 upright microscope (Oberkochen, Germany) and an LSM 510 META (Carl Zeiss MicroImaging) confocal laser-scanning microscope and analyzed using LSM 5 Image Browser (Carl Zeiss, Jena, Germany). The specificity of staining was confirmed by omitting the primary Ab.

Neuronal counts
To assess neuronal viability in the cortex of FIV- and mock-infected animals, NeuN-immunopositive neurons in the left parietal cortex and hippocampus were counted at +1.0 mm from the bregma. For the parietal cortex, immunopositive cells were counted at 400× magnification in all layers of the cortex in five separate nonoverlapping fields for each animal. Similarly, the number of neurons was counted in five different fields within the dentate gyrus at 400× magnification for each animal. The total number of cells was summed for each animal and averaged across groups.

Statistical analysis
Statistical analyses were performed by Student t test when comparing two different groups or by ANOVA test with Tukey-Kramer or Bonferroni as post hoc tests, using GraphPad Instat version 3.0 (GraphPad, San Diego, CA); p < 0.05 was considered significant.

Results
Neuroinflammatory gene expression during HIV infection
Prior studies have reported that brains from HIV-infected persons exhibit inflammatory changes, defined by glial activation and in some instances lymphocyte infiltration (34, 35), which contribute to neurodegenerative changes manifesting as HIV-associated dementia (6). To extend these studies, we investigated the expression of several inflammatory genes in brains from HIV+ and HIV− persons, which revealed that the T cell marker CD3ε (Fig. 1A), the astrocyte marker CD68 (Fig. 1B), and the microglial marker CXCL10 (Fig. 1C) were elevated in the brains of HIV+ patients compared with HIV− patients. Levels of CXCL10 (Fig. 1D) were also elevated in HIV+ brains, whereas IL-10 (Fig. 1E) transcript levels did not differ significantly. Immunocytochemical analysis revealed that CD3 immunoreactivity was negligible in HIV− brains (G, H), but was evident in HIV+ brains (K). CXCL10 immunoreactivity was not detected in HIV− brains (H), but was evident in HIV+ brains (K). In contrast, IL-10 was present on macrophage-resembling cells in HIV− brains (L), but not in HIV+ brains (L; mean ± SD; Student t test; *p < 0.05). G, I, J, L, original magnification ×400; H K, original magnification ×200.

![FIGURE 1.](http://www.jimmunol.org/) HIV infection incites immune activation in the brain.Brains from HIV+ patients showed elevated CD3ε (A), GFAP (B), class II HLA-DRA (C), and granzyme A (E) transcripts compared with HIV− patients. Levels of CXCL10 (D) were also elevated in HIV+ brains, whereas IL-10 (F) transcript levels did not differ significantly. Immunocytochemical analysis revealed that CD3 immunoreactivity was negligible in HIV− brains (G, H), but was evident in HIV+ brains (K). In contrast, IL-10 was present on macrophage-resembling cells in HIV− brains (L), but not in HIV+ brains (L; mean ± SD; Student t test; *p < 0.05). G, I, J, L, original magnification ×400; H K, original magnification ×200.
CXCL10 and IL-10 interactions during HIV infection

Earlier studies suggested that CXCL10 was induced in neurons during HIV Infection, although the mechanism is uncertain (36). To explore this observation further, we exposed human neurons to supernatants of both human neuronal cell lines was unaffected by the same supernatants (Fig. 2A). Which is indicative of process retraction but not in primary hFNs following exposure to supernatants from HIV+ MDMs (Fig. 2B). Cellular viability as measured by DAPI staining (Fig. 1B) did not differ significantly between groups. Of note, bacterial ribosomal 16S RNA levels in the brain did not differ significantly between groups (Supplemental Fig. 1A). Immunocytochemical staining of human neuronal cell lines was unaffected by the same supernatants (Fig. 1B). Likewise, CXCL10 immunoreactivity was negligible in the HIV- brains (Fig. 1B), but was apparent in HIV+ brains, particularly in cells with a neuronal appearance (Fig. 1A). Conversely, IL-10 immunoreactivity was detected in cells resembling macrophages in HIV- brains (Fig. 1B), but was minimally present in HIV+ brains (Fig. 1L). These data underscored the capacity for HIV infection to induce CXCL10 in the brain in conjunction with T cell infiltration of the brain.

LPS effects on HIV infection and neuronal viability

LPS exposure is a consequence of Gram-negative bacterial infections, which lead to engagement of TLR4 and ensuing activation of monocyteid cells (37). To investigate the effects of LPS on HIV infection, HIV- and HIV+ MDMs were exposed to PBS or LPS at days 3, 6, and 9 after HIV infection, disclosing that HIV replication, measured by RT activity, was increased significantly at days 3, 6, and 9 after LPS exposure (Fig. 3A). Application of supernatants from HIV-infected MDMs exposed to LPS for 48 h exerted differential effects on neuronal viability in terms of β-tubulin expression (Fig. 3B) and DAPI staining (Fig. 3C). At days 3 and 6 (Fig. 3B), supernatants from HIV+ MDMs exposed to LPS applied to neurons showed that neuronal β-tubulin immunoreactivity was reduced compared with supernatants from PBS-exposed MDMs, whereas at day 9, supernatants from LPS-exposed HIV+ MDMs showed a significant protective effect. Similar findings were observed in the DAPI-stained cultures (Fig. 3C), whereas supernatants from HIV- MDMs were neurotrophic at each time point (data not shown). Analyses of changes in neuronal viability over time exhibited a significant increase for cells exposed to the supernatants of chronically stimulated MDMs, as evaluated by β-tubulin immunoreactivity (Fig. 3B; p = 0.0005) and DAPI reactivity (Fig. 3C; p = 0.0025). These observations emphasized the differential effects of acute versus chronic LPS exposure on neuronal survival, presumably owing to an LPS-related tolerogenic effect. These findings indicate that repeated stimulation of HIV-infected MDMs with LPS diminishes the production of neurotoxic factors over time in contrast to cells acutely exposed to LPS.

Systemic LPS exposure reduced viral burden

Like HIV infection, FIV-induced immunosuppression (and ensuing neurologic disease) occurs largely through infection of CD4+ T cells and their subsequent depletion. Viral load is a key marker of in vivo viral burden, and its measurement in blood is a useful indicator of systemic disease status (38, 39). Animals that were repeatedly exposed to LPS showed signs of sickness behavior for ~1–2 h after injection, as evidenced by reduced motor activity, sleep, and ruffled coat, but promptly recovered in all cases. FIV

Table I. Primers used for real-time RT-PCR analyses

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5'–3')</th>
<th>Tm (°C)</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH for</td>
<td>AGC CTT CTC CAT GGT GGT GAA</td>
<td>56–60</td>
<td>Human/feline</td>
</tr>
<tr>
<td>GAPDH rev</td>
<td>CGG AGT CAA CGG ATT TGG TCG</td>
<td>56–60</td>
<td>Human/feline</td>
</tr>
<tr>
<td>GFAP for</td>
<td>CTC ACC ATC CCG CAT CTC CAC AGT</td>
<td>56</td>
<td>Human/feline</td>
</tr>
<tr>
<td>GFAP rev</td>
<td>GGA CAT CGA GAT CCG CAC CTA CAG</td>
<td>56</td>
<td>Human/feline</td>
</tr>
<tr>
<td>Granzyme A for</td>
<td>ACT CTC AGA GAA GTC ATT ATC ACC</td>
<td>56</td>
<td>Human/feline</td>
</tr>
<tr>
<td>Granzyme A rev</td>
<td>AGG GCC TCC AGA ATC TCC AT</td>
<td>56</td>
<td>Human/feline</td>
</tr>
<tr>
<td>CD3ε for</td>
<td>GAT GAC GTC GGG CAC TCA CT</td>
<td>56</td>
<td>Human</td>
</tr>
<tr>
<td>CD3ε rev</td>
<td>CAT TAC CAT CCT GGC CCC AA</td>
<td>56</td>
<td>Human</td>
</tr>
<tr>
<td>HLA-DRA for</td>
<td>GGCAAAGGACACCTGGAAA</td>
<td>56</td>
<td>Human</td>
</tr>
<tr>
<td>HLA-DRA rev</td>
<td>AGACAGTTGAGGCTCCTCAG</td>
<td>56</td>
<td>Human</td>
</tr>
<tr>
<td>CXCL10 for</td>
<td>TCC AAG GCC ATC AAG ATT TT</td>
<td>56</td>
<td>Human</td>
</tr>
<tr>
<td>CXCL10 rev</td>
<td>GCC CCC CTC TGG TTT TAA GG</td>
<td>56</td>
<td>Human</td>
</tr>
<tr>
<td>IL-10 for</td>
<td>CTC CTC ACC GTC TGG CTC CC</td>
<td>56</td>
<td>Human</td>
</tr>
<tr>
<td>IL-10 rev</td>
<td>GCA GAC GTC GCT TGT TCT CC</td>
<td>56</td>
<td>Human</td>
</tr>
<tr>
<td>CD3ε for</td>
<td>AAG CAA GAG GTG GTC AGA ACT</td>
<td>56</td>
<td>Feline</td>
</tr>
<tr>
<td>CD3ε rev</td>
<td>CTC ATT CAG GCC AGA ATG CAG</td>
<td>56</td>
<td>Feline</td>
</tr>
<tr>
<td>F4/80 for</td>
<td>CAC GAC GGA GTC ACC CTT GT</td>
<td>56</td>
<td>Feline</td>
</tr>
<tr>
<td>F4/80 rev</td>
<td>CGG AGG AAA AGA TAG TGC AG</td>
<td>56</td>
<td>Feline</td>
</tr>
<tr>
<td>CXCL10 for</td>
<td>CTC GCT TCA ATG GGG GTA</td>
<td>56</td>
<td>Feline</td>
</tr>
<tr>
<td>CXCL10 rev</td>
<td>CTC GCT TCA ATG TGG GTA</td>
<td>56</td>
<td>Feline</td>
</tr>
<tr>
<td>IL-10 for</td>
<td>CTC CTC GGG AGA AAA GCT GAA</td>
<td>56</td>
<td>Feline</td>
</tr>
<tr>
<td>IL-10 rev</td>
<td>TCC ACC ACC TGG CTC TGG TTT</td>
<td>56</td>
<td>Feline</td>
</tr>
<tr>
<td>Escherichia coli rRNA for</td>
<td>CAT TGA CGT TAC CCG CAG AAG AAG C</td>
<td>56</td>
<td>E. coli</td>
</tr>
<tr>
<td>E. coli rRNA rev</td>
<td>CTC TAC GAG ACTCAA GCT TGC</td>
<td>56</td>
<td>E. coli</td>
</tr>
</tbody>
</table>
infection resulted in reduced CD4+ T cell levels in the blood of animals with repeated LPS or PBS exposures (Fig. 4A), compared with FIV+ animals. Conversely, CD8+ T cell levels in blood were increased in PBS-exposed FIV+ animals, and this effect was suppressed in FIV+ animals that were repeatedly exposed to LPS (Fig. 4B). Analyses of weight gain in the four experimental groups (Fig. 4C) revealed that FIV+ animals treated with PBS exhibited significantly lower levels of weight gain over time. Conversely, relative weight gain in LPS-exposed FIV+ and FIV+ animals did not differ significantly from that in PBS-treated FIV+ animals over time. Viral load analyzed in blood or brain samples from FIV+ animals with repeated PBS or LPS exposures indicated that repeated LPS exposure was associated with a ∼2 log10/mg RNA reduction in plasma viral load (Fig. 4D). Likewise, LPS exposure resulted in an ∼1 log10 reduction in viral load in the parietal cortex (Fig. 4E) and basal ganglion (Fig. 4F), although viral load in the brain was ∼0.5 log10 less than in blood. These findings indicated that repeated LPS exposures suppressed blood CD8+ T cell levels and viral burden in different tissue compartments of FIV+ animals together with eliminating the delay in weight gain in the same animals.

Neuroinflammatory gene expression in FIV infection
Like HIV infection, increased neuroinflammatory gene expression is a feature of FIV infection, although the impact of repeated LPS (versus PBS) exposures remained unclear. Examination of host gene expression in both the parietal cortex and the basal ganglia revealed that the macrophage activation marker F4/80 (Fig. 5B), CD3e (Fig. 5A), and GFAP (Fig. 5C) transcript levels were significantly increased in FIV+ animals exposed to LPS, whereas day 9-derived supernatants from HIV-infected MDMs exposed to LPS exerted a comparative neuroprotective effect. Moreover, both methods of measuring neuronal viability revealed an increasing neuroprotective effect with repeated LPS exposures to HIV+ MDMs (B, C; mean ± SD; Student t test; *p < 0.05). ANOVA of a linear trend over time exhibited a significant increase in neuronal survival in cells treated with supernatants from macrophages chronically stimulated with LPS, as assessed by β-tubulin immunoreactivity (B, p = 0.0005) and DAPI reactivity (C, p = 0.0025).

FIGURE 2. IL-10 regulates CXCL10 expression in human neurons. Neuronal survival of hNB (A) was reduced by application of supernatants derived from HIV+ MDMs, but the same effect was not apparent in hFNs (B). DAPI staining of neurons to which supernatants from HIV+ MDMs were applied showed no reduction in survival among hNBs (C) or hFNs (D). In-cell Western analysis of CXCL10 revealed an induction in hNBs (E) and hFNs (F) following application of supernatants from HIV+ MDMs. Pretreatment with recombinant human IL-10 suppressed CXCL10 expression (G) induced by supernatants from HIV+ MDMs (means ± SD; Student t test; *p < 0.05).

FIGURE 3. Serial LPS exposures modulate neuronal viability. Serial exposures of MDM to LPS increased viral replication at days 6 and 9 after HIV infection (A). Days 3 and 6 MDM-derived supernatants from LPS-exposed HIV+ MDMs were cytotoxic to hNB cells relative to supernatants from HIV+ MDMs that were exposed to PBS, as measured by β-tubulin immunoreactivity (B). Day 9-derived supernatants from the LPS-exposed HIV+ MDMs prevented neuronal injury. Similarly, DAPI staining in neuroblastoma cells was reduced after application of supernatants days 3 and 6 LPS-exposed HIV+ MDMs (C), whereas day 9-derived supernatants from HIV-infected MDMs exposed to LPS exerted a comparative neuroprotective effect. Moreover, both methods of measuring neuronal viability revealed an increasing neuroprotective effect with repeated LPS exposures to HIV+ MDMs (B, C; mean ± SD; Student t test; *p < 0.05). ANOVA of a linear trend over time exhibited a significant increase in neuronal survival in cells treated with supernatants from macrophages chronically stimulated with LPS, as assessed by β-tubulin immunoreactivity (B, p = 0.0005) and DAPI reactivity (C, p = 0.0025).
the FIV+ brains, but these changes were abrogated by concurrent LPS exposures. IL-10 transcript levels were significantly reduced in the cortex of the FIV+ animals compared with FIV− animals, but IL-10 transcript abundance in LPS-exposed FIV+ brains did not differ from both FIV− groups (Fig. 5F); a similar (nonsignificant) trend was observed for the basal ganglia. Of note, bacterial ribosomal 16S RNA levels in the brain (and plasma) did not differ between groups (Supplemental Fig. 1B). Hence, these findings recapitulated earlier neuroinflammation results in human brains (Fig. 1), but also demonstrated that repeated LPS exposures reduced expression of the proinflammatory genes and restored IL-10 expression.

Neuropathologic and neurobehavioral effects of LPS exposure

Previous studies have shown that glial activation and neuronal injury are cardinal features of lentivirus infections (40–42). To define the effects of repeated LPS exposures in terms of the neuropathologic changes, brain sections from each experimental group were assessed, revealing limited Iba-1 immunoreactivity in microglia-like cells on PBS-exposed (Fig. 6A) and LPS-exposed (Fig. 6B) FIV− animals, whereas Iba-1 immunoreactivity was increased in terms of the number of cells and cellular hypertrophy in FIV+ brains (Fig. 6C); these latter changes were reduced in LPS-exposed FIV+ animals (Fig. 6D). CD3-immunopositive cells were rarely detected in the FIV− group (Fig. 6A, inset), whereas more CD3 immunoreactivity was evident in the FIV+ groups (Fig. 6C, inset). Similarly, GFAP immunoreactivity in astrocytes was detected in PBS-exposed (Fig. 6E) and LPS-exposed (Fig. 6F) FIV− animals; however, GFAP immunoreactivity was increased in the brains of PBS-exposed FIV+ animals (Fig. 6G), which was reduced by repeated LPS exposure (Fig. 6H). NeuN immunoreactivity was evident in PBS-exposed (Fig. 6I) and LPS-exposed (Fig. 6J) FIV− animals. Fewer NeuN-immunopositive cells were apparent in the brains of PBS-exposed FIV+ animals (Fig. 6K) and were restored by repeated LPS exposure (Fig. 6L). These latter observations were supported by quantitative analyses of NeuN-immunopositive neurons in the parietal cortex, which showed that mean neuronal counts/high power field were significantly reduced in the FIV+ animals exposed to PBS. However, there were no differences among the other three experimental groups (Fig. 6M). These observations were corroborated by neurobehavioral testing, which revealed that the FIV+ animals with repeated PBS exposures exhibited significant deficits, as indicated by increased cumulative mean deficit scores over the latter 6-wk period of infection, compared with the other three groups (Fig. 6N). Thus, these neurobehavioral data mirrored the in vivo neuropathologic and gene expression studies.

Discussion

In this study, we show that immune conditioning induced by repeated LPS exposures during lentivirus infections prevented the development of neurovirulence in both in vitro and in vivo models in conjunction with suppression of CXCL10, which was in part modulated by IL-10.
induction. In vivo LPS-mediated neuroprotection was associated with reduced T cell infiltration of the brain, reduced viral burden, and suppression of CXCL10. Based on the present in vitro studies, IL-10 prevented the induction of CXCL10; it is likely that reduced CXCL10 in vivo prevented chemotaxis of T cells and monocyctic cells into the brain (43), thereby reducing neuroinflammation and ensuing neurodegeneration. Indeed, infiltrating leukocytes might express proteases (i.e., granzyme A), which have the capacity to kill neurons (44); this is congruent with our findings of reduced neuronal counts in the parietal cortex of FIV-infected animals. CXCL10 also exerts direct neurotoxic effects, which also underlies its neuropathogenic effects (36). Collectively, the present findings underline the importance of chemokine expression in the brain, in terms of influencing leukocyte migration in lentivirus neurovirulence, but also point to a role for regulation of innate immunity in a structured and chronic manner as a plausible neuroprotective strategy.

Induction of select innate immune mechanisms represent the hallmark of several neurodegenerative diseases, which are age-dependent, sex-dependent, and host genetic background-dependent and are frequently apparent as a fine balance between beneficial and adverse effects, depending on the immune molecules implicated (45, 46). In fact, limited neuroinflammation was evident in the FIV model at week 6 postinfection (Supplemental Fig. 2). Failure to regulate interferon-α production in the context of chronic HIV infection has compelling pathogenic consequences for immune status (47) and likely neurologic disease (48, 49). Alternatively, sequential activation of TLR4 initiates different outcomes depending on the model; repeated LPS exposures of mice carrying a mutant SOD1 accelerated the disease course leading to death (50). In contrast, LPS exposure before the induction of cerebral ischemia ameliorated the size of the ensuing lesion, although these effects might be related to age and the species used in the respective studies (51–53). LPS also shows diverse effects on the outcomes of experimental autoimmune encephalomyelitis, which might depend on the phenotype of the dendritic cells under different experimental conditions (15). In humans with chronic sepsis, the risk of septic encephalopathy is greater (54) and might also contribute to the emergence of HIV-associated dementia (14). In the present model, the bacterial rRNA levels in the brain did not differ among the different experimental groups, thereby excluding this effect as a determinant of neuropathogenesis in the present context.

The underlying neuroprotective defense mechanism in the present studies appeared to be dependent on CXCL10 suppression, perhaps by IL-10, which is known to occur as a consequence of LPS exposure (55, 56), but other pathways including differential expression of PGE2 and other host cytokines are also regulated by chronic LPS exposure (57). Importantly, IL-10 is an anti-inflammatory cytokine that exerts effects on both systemic inflammation and neuroinflammation (58). However, it is likely that the effects of LPS were confined to cells in the circulation with consequent neuroprotective outcomes in the present in vivo model, because LPS would have been rapidly degraded after i.p. injection. Indeed, LPS is unlikely to cross the blood–brain barrier to any extent, except at sites devoid of a blood–brain barrier (i.e., the circumventricular organs), all remote

FIGURE 5. Altered host gene expression in brains of FIV+ animals. CD3ε (A), F4/80 (B), GFAP (C), and CXCL10 (D), and granzyme A (E) transcript levels were increased in FIV+ animals in the CTX and BG, but these gene inductions were suppressed by repeated LPS exposures. IL-10 transcript levels were reduced in brains of FIV+ animals receiving PBS in the CTX, but this finding was reversed in the LPS-treated FIV+ animals (F, mean ± SD; ANOVA with post hoc Bonferroni testing; *p < 0.05).
from the cortex or basal ganglia. Given the in vitro findings of LPS-mediated induction of viral replication in macrophages, the benefits of LPS exposure likely represent a more protracted tolerogenic or deactivating effect on circulating leukocytes, eventually reducing their egress from the blood into the brain with accompanying reduction in brain and plasma viral load.

In the current studies, CXCL10 was principally expressed in the CTX among FIV+/PBS-exposed animals (M). The loss of NeuN-positive cells in the CTX of FIV+ animals (N) showed abundant levels of NeuN immunopositive neuronal nuclei (I and J), whereas FIV+PBS-exposed brain sections (H) revealed a loss of neurons, which was not evident in the FIV+/LPS-exposed animals (L). NeuN-positive cells were counted in five to eight randomly selected fields in four cats and revealed a loss of neurons in the CTX among FIV+/PBS-exposed animals (M). The loss of NeuN-positive cells in the CTX of FIV+ animals was restored by LPS exposures in FIV+. FIV infection caused worsened neurobehavioral performance, whereas FIV+ animals exposed to LPS showed no differences compared with FIV− animals (N; mean ± SD; ANOVA with post hoc Bonferroni testing, *p < 0.05). A–L, original magnification ×400; inset, ×630.

Acknowledgments

We thank Leah DeBlock and Krista Nelles for assistance with manuscript preparation.

Disclosures

P.V. is an Alberta Heritage Foundation for Medical Research Fellow. C.P. holds a Canada Research Chair (Tier 1) in Neurological Infection and Immunity and is an Alberta Heritage Foundation for Medical Research Senior Scholar.

References

