IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes

Francesca Fallarino, Claudia Volpi, Teresa Zelante, Carmine Vacca, Mario Calvitti, Maria C. Fioretti, Paolo Puccetti, Luigina Romani and Ursula Grohmann

J Immunol 2009; 183:6303-6312; Prepublished online 19 October 2009;
doi: 10.4049/jimmunol.0901577
http://www.jimmunol.org/content/183/10/6303

References This article cites 61 articles, 27 of which you can access for free at:
http://www.jimmunol.org/content/183/10/6303.full#ref-list-1

Why *The JI*? Submit online.
- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

Errata An erratum has been published regarding this article. Please see next page or:
/content/184/12/7316.full.pdf
IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes

Francesca Fallarino, Claudia Volpi, Teresa Zelante, Carmine Vaccia, Mario Calvitti, Maria C. Fioretti, Paolo Puccioni, Luigina Romani, and Ursula Grohmann

Originally predicated on the recognition of an increasing prevalence of allergy, the hygiene hypothesis was later found to accommodate the contrasting epidemiologic trends in developed countries for infectious vs autoimmune diseases. Experimentally, reduced exposure to infections will increase the risk of disease in several models of experimental autoimmunity. Although TLRs were initially considered as stimulatory molecules capable of activating early defense mechanisms against invading pathogens, emerging data suggest that they can also exert a regulatory function. In the present study, we evaluated whether TLR3 and TLR9, recognizing microbial dsDNA and CpG-containing DNA sequences, respectively, play a role in the protection from experimental autoimmune diabetes induced in C57BL/6 mice by streptozotocin. In wild-type animals, the disease was accompanied by up-regulation of IDO in pancreatic lymph nodes and would be greatly exacerbated by in vivo administration of an IDO inhibitor. Conversely, administration of a CpG-containing oligodeoxynucleotide greatly attenuated the disease in an IDO-dependent fashion. TLR9-, but not TLR3-deficient mice developed a more robust disease, an event accompanied by lack of IDO induction in pancreatic lymph nodes. Thus, our data suggest that the TLR9-IDO axis may represent a valuable target in the prevention/therapy of type 1 diabetes. The Journal of Immunology, 2009, 183: 6303–6312.

Unlike the majority of organs and tissues in the human body, the immune system requires systemic environmental pressure to develop properly. Animals raised in a germfree environment acquire poorly efficient immunoregulatory mechanisms and are at a greater risk of diseases associated with immune dysfunction (1). The incidence of major infectious diseases has significantly decreased in developed countries over the last three decades. In parallel, the incidence of most autoimmune diseases, including type 1 diabetes (T1D), has steadily been increasing in Europe and North America (2, 3). Therefore, both experimental and epidemiological data suggest that certain microorganisms and link innate with adaptive immune responses (7–9). The genetically diabetes-prone NOD mouse strain represents a prototypic experimental model of human T1D. In accordance with the principle of protective tolerance, decontamination of NOD mice from microbes does increase diabetes frequency. Conversely, deliberate infection of those mice with various microorganisms totally prevents diabetes onset if infection occurs early in life (5). An outstanding study has recently demonstrated that the interaction of intestinal microbes with the innate immune system is a critical epigenetic factor modifying T1D predisposition in NOD mice (11). Nonetheless, the precise mechanisms of induction of tolerance by the microbiota remain to be elucidated.

IDO is expressed in dendritic cells (DCs) in response to inflammatory stimuli, including IFN-γ and CpG oligodeoxynucleotide (ODN), and represents an important physiological mechanism capable of controlling both inflammation and autoimmunity (12–14). IDO catalyzes the first and rate-limiting step of tryptophan catabolism along the kynurenine pathway, which produces a series of tryptophan catabolites collectively known as kynurenines. We have previously demonstrated that IDO activity, hence, tryptophan catabolism, is not inducible by IFN-γ in DCs from NOD mice (15). This defect impairs tolerogenesis to a β cell-specific autoantigen also dominant in human T1D. Although maneuvers aimed at correcting the IDO defect will restore autoantigen-specific tolerogenesis (16), it is not currently known whether tryptophan catabolism plays a role in the development of the disease.

In the present study, we investigated whether TLRs and IDO are involved in the control of autoimmune diabetes in mice nongenetically prone to the disease. We found that both TLR9 and IDO are required for protection from an inflammatory/prodiabetic insult...
in healthy conditions. However, engagement of TLR9 by CpG-ODN did not efficiently induce IDO expression and activity in lymphoid tissues from NOD mice. Thus, our data: 1) confirm the protective role of TLRs in the prevention of T1D, 2) identify IDO as the critical TLR9 downstream effector in regulating inflammation/autoimmunity, and 3) suggest that successful prevention/therapy of T1D in genetically diabetes-prone subjects may require multiple and integrated approaches, capable of restoring an IDO-mediated, physiologically protective tolerance.

Materials and Methods

Mice

Four- and 8-wk-old C57BL/6 mice of either sex were obtained from Charles River Breeding Laboratories. Mice homozygous for the TLR3 (Tlr3^{−/−}) and TLR9 (Tlr9^{−/−}) targeted mutation raised on the C57BL/6 background were generated as described (17, 18), and bred at the breeding facilities of the University of Perugia. Female NOD/Mrk mice, 4 wk of age, were purchased from Taconic Farms. All animals were housed and fed under specific pathogen-free (SPF) conditions. In all in vivo studies were in compliance with national (Italian Approved Animal Welfare Assurance A-3143-01) and Perugia University Animal Care and Use Committee guidelines.

In vivo treatments

For the induction of experimental autoimmune diabetes, wild-type (WT), Tlr3^{−/−}, or Tlr9^{−/−} C57BL/6 mice were injected i.p. for 5 consecutive days with 40 mg/kg body weight of freshly made streptozotocin (STZ; Sigma-Aldrich) in 0.1 mol/L citrate buffer (pH 4.5). Day 1 was that of the first STZ injection. Control mice received vehicle alone. Nonfasting glucose levels in tail vein blood samples were monitored 1–2 times/wk. Mice with a blood glucose level of >250 mg/dl for ≥2 consecutive days were considered diabetic. To inhibit IDO activity in vivo, groups of WT mice were treated with slow-release pellets of 1-methyl-DL-tryptophan (1-MT; BD Pharmingen), fixed, permeabilized, and stained with Alexa Fluor 488 anti-mouse Foxp3 (MF-14; Biolegend) or isotype control Alexa Fluor 488 rat IgG2b.

T regulatory (Treg) cell purification and assessment

CD4⁺CD25⁺ and CD4⁺CD25[−] T cells were isolated from lymph nodes by MACS, as described (20, 23). The purity of either T cell fraction was more than 95%. For polyclonal Treg suppression assay, CD4⁺CD25[−] cells were cocultured with irradiated T cell-depleted splenocyte samples and CD4⁺CD25⁺ cells for 3 days in the presence of soluble anti-CD3 (20, 23). Proliferation was measured by incorporation of [³H]thymidine, according to standard procedures.

ELISA and TGF-β bioassay

Nonfasting blood insulin levels were measured by a mouse insulin ELISA kit (Mercodia AB). Cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, IL-23, and IFN-γ) were measured in culture supernatants by ELISA using specific kits or previously described reagents and procedures (21, 24). An ELISA-based TransAM Flexi NF-κB Family Kit (Active Motif) was used to monitor activity of NF-κB family members, as described (21, 24). Active TGF-β was measured, as described (25), using CCL-64 mink lung epithelial indicator cells (American Type Culture Collection), which do not appear to activate inactive TGF-β precursor molecules, but are extremely sensitive to growth inhibition induced by the biologically active cytokine.

Real-time PCR

Real-time PCR analysis was performed, as described (26), using Idaho-specific primers (5[′]-GAAGATCCTGGAAGACCAC-3[′] as AS, 5[′]-GAAGCTGCATTGCCACCA-3[′] as FLJ). For all panels, bars represent the ratio of gene to Gapdh expression, as determined by the relative quantification method (∆Δ cycle threshold; mean ± SD of triplicate determination).

Western blotting and IDO functional analysis

IDO expression was investigated in cells cultured overnight with complete medium either alone or in the presence of I₁ μg/ml CpG-ODN by immunoblotting with a rabbit antihuman IDO mAb raised in our laboratory (22). Anti-β-actin Ab (Sigma-Aldrich) was used as a normalizer. For measuring IDO functional activity, pDCs were stimulated either with 200 U/ml IFN-γ (R&D Systems) or 1 μg/ml CpG-ODN and, after 18 h, 1-kyurenine, the main IDO product, was measured in culture supernatants by HPLC, as described (19). In PLN lymphocytes, treatment with IFN-γ, but not CpG-ODN, greatly reduced the cell viability, and thus, could not be used.

Cell isolation from pancreatic lymph nodes (PLNs) and peripheral lymphoid organs

Purification of CD4⁺ T cells from pooled peripheral lymph nodes (with the exception of PLNs; see below) was conducted as described (20–22). For cytotoxic induction, cells (1 × 10⁶/ml) were cultured in the presence of plate-bound anti-CD3 (145-2C11) and anti-CD28 (PV-1) (both at the concentration of 1 μg/ml) for 48 h. Purification of PLN lymphocytes involved treating the organ with Complete Mini Protease inhibitors (Roche Applied Science), followed by digestion with collagenase type IV (Sigma-Aldrich) in the presence of bovine pancreatic DNase (Sigma-Aldrich) for 30 min at 37°C. The digested pancreas was further disrupted by gently pushing the tissue between, and panniculus separated on a Percoll gradient (Sigma-Aldrich). Purified PLN cells in STZ-treated mice (day 21) were made up of ~10% lymphocytes (mostly CD4⁺), 3% monocytes, and 5% CD11c⁺ cells. In prediabetic NOD mice, the corresponding percentages were 16, 25, and 6%. Splenic DCs were purified by magnetic-activated sorting using CD11c MicroBeads and MidiMacs (Miltenyi Biotec), in the presence of EDTA to disrupt DC-T cell complexes, as described (15, 19). Cytokine production from PLN lymphocytes and splenic DCs was measured in culture supernatants harvested after 24-h cell incubation with medium alone. For the purification of plasmacytoid DCs (pDCs), CD11c⁺ cells were further fractionated using mPDC1- MicroBeads (Miltenyi Biotec), as described (21).

Flow cytometry

In all FACs analyses, cells were treated with rat anti-CD16/32 (2.4G2) for 30 min at 4°C for blockade of Fc receptors before assessing on an EPICS flow cytometer using EXPO 32 ADC software (Beckman Coulter). CD4, CD25, CTLA-4, and CD62L expressions were analyzed as described (21). For intracellular Foxp3, cells were stained with anti-CD4 (GK1.5)-PE (BD Pharimgen), fixed, permeabilized, and stained with Alexa Fluor 488 anti-mouse Foxp3 (MF-14; Biolegend) or isotype control Alexa Fluor 488 rat IgG2b.

Histopathology and immunohistochemistry

Paraffin-embedded sections (3–4 μm) of pancreata (five per organ) were stained with H&E and analyzed by light microscopy. Insulitis scoring was according to the following criteria: severe insulitis (score 3), 50% or higher of the islet area is infiltrated; mild insulinis (score 2), <50% of the islet area is infiltrated; peri-insulitis (score 1), infiltration is restricted to the periphery of islets; and no insulinis (score 0), absence of cell infiltration. Results are presented as the percentage of islets per mouse in each category. At least 40 islets were counted per mouse blindly by two observers. In immunostaining for IDO, 4 μm sections were cut from paraffin blocks and captured on a coverslip in 1,4-diazabicyclo[2.2.2]octane solution (all from Sigma-Aldrich). Slides were examined using a BX 41 apparatus in conjunction with F-view software (both from Olympus).

Nuclear extracts and EMSA

Nuclear extract preparation and EMSA were performed, as described (27). Briefly, DNA-binding reactions were conducted in 20 min at room temperature in a final volume of 20 μl. The reactions were started by adding 10 μg of nuclear protein extract to a reaction mix containing ~20,000 cpm of [³²P]ATP-labeled NF-κB dsDNA ODN (5′-AGAGGGACCTTTC CGAGAGGC-3′) (27). Cold competitor ODN were added to the reaction mix before the radiolabeled probe (data not shown). For supershift experiments, protein extracts were incubated with anti-p65 or anti-RelB Ab (Santa Cruz Biotechnology) for 30 min at room temperature after the addition of the radiolabeled probe. Whole samples were then loaded on a 5% native polyacrylamide gel in Tris-borate-EDTA buffer.

Statistical analysis

In the in vivo experiments, glycemia data were analyzed by Kaplan-Meier plots. Paired data were evaluated by Student’s t test. All in vitro determinations are means ± SD from at least three independent experiments, unless otherwise indicated. All n values were computed by power analysis, so as to yield a power of at least 80% with an α-level of 0.05.
Results

Tlr9−/− mice are highly susceptible to experimental autoimmune diabetes

To investigate the role of TLR3 and TLR9 in the pathogenesis of chemically induced autoimmune diabetes, we injected Tlr3−/− and Tlr9−/− mice and their C57BL/6 WT counterparts with multiple low doses of STZ. From 14 days, average were significantly higher in Tlr9−/−, but not Tlr3−/− mice, as compared with WT animals, and further increased thereafter (Fig. 1A). In addition, whereas at least 40% WT and Tlr3−/− animals remained normoglycemic at day 40, all Tlr9−/− mice became diabetic as early as day 20 (Fig. 1, B and C). Although serum insulin levels were generally decreased in STZ-treated as compared with vehicle-injected counterparts, insulinemia in STZ-treated Tlr9−/− mice was significantly lower when compared with STZ-treated WT mice (Fig. 1D). Groups of mice injected with STZ were sacrificed at different times, and 5-μm-thick sections of pancreas were stained with H&E or immunostained for insulin. The majority of pancreatic islets of WT and Tlr3−/− mice were either normal or mildly infiltrated by leukocytes and clearly positive for insulin (Fig. 1, E and F). In contrast, as much as 17% (at day 14) or 50% (at day 40) of the islets in Tlr9−/− mice were characterized by intrainsulitis and low insulin. Thus, our data suggest that Tlr9−/−, but not Tlr3−/−
CD11c from peripheral lymph nodes. In addition, cytokine production by and significantly increased upon STZ treatment in samples from WT either CTLA-4 or Foxp3, the Treg cell lineage transcription factor, although Th1 cells appear to play a major role in autoimmune diseases. In experimental diabetes induced by STZ, the pattern of cytokine production differs from that of WT counterparts. In DC cultures, IL-23 increased equally in all STZ-treated groups, although a dramatic increase in IL-6 was found in supernatants from TLR9-deficient cells. In parallel, IL-6 and IL-17A levels were also significantly higher in PLN lymphocytes from STZ-treated Tlr9−/− mice, but not Tlr3−/− mice, as compared with WT animals. Thus, our data suggest that lack of TLR9 expression may lead to a higher production of proinflammatory IL-6 in diabetic Tlr9−/− mice that, combined with high levels of IL-23, may impede the TGF-β-mediated expansion of Foxp3+ Treg cells and skew the balance toward the development and differentiation of pathogenic Th17 cells.

IDO is not expressed in PLNs of diabetic Tlr9−/− mice

IDO has a primary role in the peripheral generation of Treg cells, under physiological or pathological conditions. Furthermore, in experimental pathogenic inflammation, IDO helps to tame overzealous and exaggerated inflammatory response driven by IL-23 and IL-17. In contrast, these cytokines can down-regulate tryptophan catabolism. Signaling through TLR9 induces IDO expression in splenic DCs, particularly in the plasmacytoid subset (pDC), and functional tryptophan catabolism is necessary for the development and differentiation of pathogenic Th17 cells.

IDO expression was accompanied by significant kynurenine production by splenic pDCs from WT and Tlr3−/− mice after in vivo treatment with STZ. Thus, our data suggest that deficient TLR9 expression may determine defective IDO induction response to pancreatic inflammation.

In vivo treatment with CpG-ODN protects mice from STZ-induced diabetes in an IDO-dependent fashion

To evaluate the functional role of IDO as induced in the course of diabetes development and its potential link with TLR9 activation, WT recipients were administered 1-MT, the gold standard in IDO

Table I. Quantitative analysis of T cell populations in gated CD4+CD25+ cells in spleens, lymph nodes, and PLNs in mice treated with STZ

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Spleen</th>
<th>LympNodes</th>
<th>PLNs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STZ</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>27.8</td>
<td>41.3</td>
<td>26.9</td>
</tr>
<tr>
<td>Fox3p</td>
<td>20.2</td>
<td>28.2</td>
<td>21.4</td>
</tr>
<tr>
<td>CD62L</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>CD4 CD25 (in total cells)</td>
<td>7.5</td>
<td>8.3</td>
<td>6.9</td>
</tr>
</tbody>
</table>

*Data are mean percentages of positive cells of three experiments, each consisting of three mice per group per experiment. SD (not included in the table) never exceeded 10% of the mean value. Bold values, p < 0.01 (STZ treated vs untreated).
inhibition, in the form of slow release pellets implanted on day 0, i.e., 1 day before STZ treatment. Control mice received placebo pellets. All mice treated with STZ and 1-MT developed hyperglycemia (Fig. 4, A and B) with a kinetic pattern comparable to that manifested by Tlr9−/− mice treated with STZ alone (Fig. 1B). Conversely, administration of CpG-ODN determined a reduced frequency of hyperglycemic animals, an effect that could be reversed by cotreatment with 1-MT, but not placebo pellets (Fig. 4B). The therapeutic effect of CpG-ODN was accompanied by a significant increase in the percentage of CD4+Foxp3+ cells in lymph nodes (>50% increase in three experiments; p < 0.001, CpG-ODN vs PBS), whereas the opposite pattern could be observed in mice treated with 1-MT, either alone or combined with CpG-ODN (>50% decrease in three experiments; p < 0.001, 1-MT vs prospective placebo) (Fig. 4C). In addition, IL-17A and IL-6/IL-23 productions by lymph node CD4+ cells and by splenic DCs, respectively, further increased in mice treated with STZ and 1-MT/CpG-ODN, but decreased after in vivo treatment with STZ in combination with CpG-ODN and placebo. In PLNs, CpG-ODN treatment significantly reduced the production of both IL-6 and IL-17A in an IDO-dependent fashion (Fig. 4D). Our data therefore indicate that an intact tryptophan catabolism is required.
regulation in NOD mice has been ascribed to many causes, reflecting the onset of insulitis at 4 wk of age and the consequent T immune diabetes (3). Most female mice die of hyperglycemia, reflecting the onset of insulin-dependent diabetes at 4 wk of age and the consequent T cell-mediated destruction of pancreatic β cells. The immune dysregulation in NOD mice has been ascribed to many causes, including aberrant APC function, reduced suppressive activity of Treg cells (38), and, more recently, resistance to regulation in T cell effectors (39). In 2003, our group provided the first evidence that IFN-γ fails to induce IDO, and hence, tolerizing properties in splenic DCs from NOD mice early in prediabetes (15). Prompted by the results obtained in the STZ diabetes model, we administered multiple doses of CpG-ODN to 4-wk-old NOD females. No protection, but rather acceleration of diabetes development could be observed in CpG-ODN-treated mice as compared with vehicle-treated counterparts (Fig. 5, A and B), despite considerable expression of Tlr9 transcripts in both splenocytes and PLN cells, which was comparable to that of C57BL/6 mice of same sex and age (data not shown). Lack of protection from diabetes was accompanied by very low induction of IDO expression in both splenic pDCs and PLN cells by in vitro incubation with CpG-ODN of cells from NOD as compared with STZ-treated C57BL/6 mice (Fig. 5, C and D). Accordingly, IDO activity was also poorly observed in the former cells (Fig. 5E). CpG-ODN, however, was capable of inducing high production of IL-6 in NOD PLNs as compared with parallel samples from C57BL/6 mice, either untreated or treated with STZ (Fig. 5F), in the face of basally higher levels of the cytokine. Because IL-6 can antagonize tryptophan catabolism via induction of proteasomal degradation of IDO (40), our data suggest that an aberrant TLR9 signaling producing high levels of IL-6 may underlie the exacerbating effects of CpG-ODN in NOD mice.

We have recently demonstrated that IDO expression is contingent on the noncanonical pathway of NF-κB activation (14, 21, 26). Recent molecular dissection of NF-κB activation has shown that NF-κB can be induced by the so-called canonical (classical) and noncanonical (alternative) signaling pathways, leading to distinct patterns in the individual NF-κB subunits that are activated and the downstream genetic responses that are induced. The proinflammatory canonical pathway involves activation of the IkB kinase (IKK)-β, which leads to phosphorylation-induced proteolysis of the inhibitor IkBα and consequent nuclear translocation of the p65 subunit in the form of p50-p65 dimers. In the noncanonical pathway, activation of IKKα by NF-κB-inducing kinase results in the processing of p100 to p52 and consequent formation of p52-RelB dimers, which translocate into the nucleus and activate an anti-inflammatory gene program (13, 14). In pDCs, triggering of TLR9 can activate both IKKα and IKKβ-mediated pathways (41). To investigate whether the inability of CpG-ODN to induce IDO in NOD mice could be due to altered signaling, PLN lymphocytes from both WT C57BL/6 and NOD mice were stimulated in vitro with CpG-ODN and, after 30–60 min, NF-κB family activation was quantified by means of an ELISA kit specific for p65 and p52 (Fig. 5G). In WT C57BL/6 cells, either untreated or treated with STZ, we found that CpG-ODN activated nuclear translocation of p65 and p52 to a similar extent. In contrast, in NOD cells, the nuclear translocation of p65 was significantly higher than that of p52 as early as at 30 min, suggesting the occurrence of a dominant, proinflammatory response mediated by canonical NF-κB in NOD immune cells upon engagement of TLR9. The preferential activation of p65 in NOD PLN cells in response to TLR9 stimulation was further confirmed by EMSA (Fig. 5H).

Discussion

IDO is a metabolic enzyme conserved through the last 600 million years of evolution. Initially confined to the regulation of tryptophan availability in local tissue microenvironments, IDO is now considered to play a wider role, which extends to homeostasis and plasticity of the immune system, with implications for many aspects of immunopathology, including chronic inflammatory and

FIGURE 3. Lack of IDO induction in diabetic Tlr9−/− mice. Groups of mice treated with STZ as in Fig. 1 were sacrificed at day 21 and pDCs were purified from the spleen. A, mRNA levels of Idol were quantified by real-time PCR using Gapdh normalization. Data (means ± SD of three experiments) are presented as normalized transcript expression in the samples (cells from STZ-treated mice) relative to normalized expression in the respective controls, i.e., cells from untreated mice (fold change = 1; dotted line). B, IDO protein expression was assayed by immunoblot analysis of whole-cell lysates. Blots were stripped and reprobed with anti-β-actin Ab. One of three experiments. C, Data obtained as in B (means ± SD from three experiments) were analyzed by scanning densitometry and are presented as IDO protein expression relative to β-actin. * Indicates IDO protein densitometric value, **, p < 0.01. D, Functional IDO activity was measured in terms of L-kynurenine levels in supernatants from splenic pDCs treated overnight with IFN-γ. Data are means ± SD of three experiments. **, p < 0.01 and ***, p < 0.001.
autoimmunity (14). Its immunoregulatory effects are mainly mediated by DCs and involve not only tryptophan deprivation, but also the production of kynurenines, which act on IDO-dependent protection by CpG-ODN from STZ-induced diabetes. Groups of WT mice (n = 10) were treated with STZ alone (days 1–5) or in combination with CpG-ODN (days 7 and 9) and/or 1-MT (day 0). Controls received STZ, PBS (days 7 and 9), and placebo pellets (day 0). A and B, Blood glucose levels were monitored over time, and average blood glucose (A) and diabetes incidence (B) were plotted over time, as in Fig. 1. B, p < 0.05 (PBS + 1-MT or CpG-ODN + placebo vs control + placebo) and p < 0.001 (CpG-ODN + 1-MT vs CpG-ODN + placebo). Parallel groups of mice were sacrificed at day 21 and analyzed for expression of Foxp3 in gated CD4+ cells (C) and cytokine production (D), as in Fig. 2. CD4+ T cells were purified from pooled peripheral lymph nodes and pDCs from spleens. PLN cells were also assayed. A–C, One experiment is shown of three. D, Data (pg/ml) are means ± SD of three experiments.

FIGURE 4. IDO-dependent protection by CpG-ODN from STZ-induced diabetes. Groups of WT mice (n = 10) were treated with STZ alone (days 1–5) or in combination with CpG-ODN (days 7 and 9) and/or 1-MT (day 0). Controls received STZ, PBS (days 7 and 9), and placebo pellets (day 0). A and B, Blood glucose levels were monitored over time, and average blood glucose (A) and diabetes incidence (B) were plotted over time, as in Fig. 1. B, p < 0.05 (PBS + 1-MT or CpG-ODN + placebo vs control + placebo) and p < 0.001 (CpG-ODN + 1-MT vs CpG-ODN + placebo). Parallel groups of mice were sacrificed at day 21 and analyzed for expression of Foxp3 in gated CD4+ cells (C) and cytokine production (D), as in Fig. 2. CD4+ T cells were purified from pooled peripheral lymph nodes and pDCs from spleens. PLN cells were also assayed. A–C, One experiment is shown of three. D, Data (pg/ml) are means ± SD of three experiments.
and IL-17A by immune cells deriving from both peripheral lymphoid tissues and PLNs was greatly increased in those mice in response to STZ, as compared with WT C57BL/6 counterparts. In PLNs, no or very low IDO protein and activity was to be detected in Tlr9−/−/− and Tlr3−/−/− nondiabetic and diabetic mice, despite detectable basal enzyme expression and further induction in Tlr3−/−/− and WT animals by STZ in vivo treatment. In addition to substantiating and further defining the inflammatory/immunological aspects of STZ-induced diabetes, our data suggest that TLR9, but not TLR3 signaling, is necessary for the control of the disease and also for the induction of IDO at the pancreatic level.

The possible protective role of IDO was further investigated in WT mice by means of administration of either the IDO inhibitor 1-MT (which determined a more robust diabetic disease in response to STZ comparable to that of Tlr9−/−/− mice) or the TLR9 ligand CpG-ODN (which largely prevented hyperglycemia onset on condition that IDO was fully active). In the latter case, the TLR9-driven protection was accompanied by a further increase in
CD4\(^{+}\)Foxp3\(^{+}\) Treg cells as compared with controls, whereas production of proinflammatory IL-6 and IL-17A from PLN lymphocytes was reduced. Therefore, our data further extend the protective potential of the TLR9-IDO axis from animal models of allergic disorders (14) to experimental autoimmune diabetes induced in mice nongenetically prone to the disease, and reveal an essential role of IDO expression in PLNs for the control of insulitis and hyperglycemia. Interestingly, this axis is already known to be important in the generation of human adaptive Treg cells (53), whereas either CpG-ODN (54) or kynurenines (36, 55) can control Th17-mediated inflammatory responses in murine disease models. Although TLR9 and IDO have not been directly linked yet, it is interesting to note that experimental autoimmune encephalomyelitis can be exacerbated by either lack of TLR9 expression (56) or of IDO activity (57).

However, in the NOD mouse, the situation is far more complex. Wong et al. (58) provided evidence that the incidence of diabetes in Tlr9\(^{-/-}\), but not Tlr3\(^{-/-}\) NOD mice maintained in SPF conditions is significantly lower when compared with their heterozygous (Tlr9\(^{+/+}\)) littersmates. In addition, Wen’s group (11) demonstrated that NOD mice lacking MyD88, but not TLR3, exhibit loss of diabetes development when maintained in SPF conditions, despite the development of robust diabetes in a germfree environment. However, colonization of germfree MyD88\(^{-/-}\) NOD mice with a defined microbial consortium attenuates the disease (11). Overall, the bulk of available data suggests that, in the NOD mouse, TLR9-MyD88 signaling does not protect against, but rather sustains pathogenesis. Nonetheless, alternative microbial signals, apparently not engaging TLR3, can exert protective effects. Paradoxically, STZ treatment both prevents and reverses islet destructive autoimmunity in NOD mice (59). Considering that TLR9 can be activated also by host unmethylated CpG-containing DNA and non-CpG DNA (46) and that STZ can induce multiple DNA modifications, it might be speculated that the STZ treatment is capable of generating endogenous, regulatory TLR9 ligands. In agreement with data from knockout NOD animals, our current data indicate that multiple i.p. injections of SPF NOD mice with CpG-ODN accelerate diabetes development. However, it has been previously reported that i.m. vaccination of SPF NOD mice with CpG-ODN significantly reduces the incidence of diabetes (60). Although s.c. vs i.v. CpG-ODN administration has already been shown to determine opposite effects (50), it is worth mentioning that the successful i.m. administration of CpG-ODN was preceded by the injection of cardiotoxin, a molecular adjuvant particularly effective in i.m. DNA vaccinations. In this specific case, cardiotoxin pretreatment may have reset the dysregulated immune system of the NOD mouse (38), allowing CpG-ODN to exert an effective immunosuppressive effect. Thus, the inability of TLR9 to induce a regulatory pathway in NOD mice may rely on the absence of appropriate endogenous TLR9 ligands and/or the existence of signaling defects.

In evaluating the capacity of individual TLRs to promote either inflammation/autoimmunity or protective tolerance, the dominance of specific signaling pathways should be taken into account (46). TLR9 is known to signal via the MyD88 adapter, which, in pDCs, can activate two distinct NF-\kappaB pathways, namely the classical or canonical pathway (in which IKK\beta kinase plays a pivotal role) and the alternative or noncanonical pathway (which relies on IKK\alpha activation). Although TLR9-IKK\beta signaling leads to the nuclear translocation of p50-p65 dimers and production of classical proinflammatory cytokines, activation of IKK\alpha by TLR9 triggering induces type I IFNs via nuclear translocation of p52-RelB complexes (41). We have recently found that noncanonical NF-\kappaB activation is necessary for the induction of IDO-mediated therapeutic effects in a model of airway allergic inflammation (21). Furthermore, type I IFNs, although less potent than IFN-\gamma, can also act as IDO inducers (13, 14). Our current data indicate that the CpG-ODN treatment, either in vivo (data not shown) or in vitro, does not induce IDO protein and activity in NOD splenic pDCs and PLNs, despite a considerable induction in parallel samples from diabetic WT C57BL/6 mice. Lack of IDO induction is accompanied by overactivation of the proinflammatory p65 as compared with anti-inflammatory p52 subunit, whereas in cells from diabetic and non-diabetic C57BL/6 mice the amounts of p65 and p52 activated by CpG-ODN are quite similar. Although we cannot presently exclude the absence of appropriate TLR9 ligands, our data indicate that a dysfunctional TLR9 signaling may underlie the pathogenic/proinflammatory effect of this receptor in spontaneous autoimmune diabetes and may impede the effective induction of counterregulatory mechanisms mediated by IDO.

In conclusion, the identification of the molecular targets and mechanisms through which microbial ligands exert their protective effects may lead to a better understanding of the early pathogenesis processes involved in T1D, may provide new markers for an early diagnosis of the disease, and can ultimately lead to the generation of drugs mimicking protective microbial entities that can be used in either the prevention and/or treatment of T1D patients. The present study suggests that activation of TLR9, but not TLR3, can induce IDO, and thus control early inflammatory attacks to \(\beta\) cells. Harmonious TLR9 signaling, however, seems to be mandatory for fully protective activity of tryptophan catabolism. The latter, indeed, appears to be defective not only systematically, but also specifically in pancreas-associated lymph nodes of NOD mice. Thus, TLR9 and IDO may represent innovative and valuable molecular targets in the prevention/therapy of T1D. Although we are still currently evaluating the existence of a possible IDO defect in T1D patients, our data support the recent hypothesis that only combination therapies, capable of correcting the dysregulated immune signaling at multiple levels, will enable the permanent prevention and curing of T1D (61).

Acknowledgments

We thank G. Andrielli for technical assistance and digital art.

Disclosures

The authors have no financial conflict of interest.

References

25. Spaccapelo, R., L. Romani, L. Tonnetti, E. Cenci, A. Mencacci, G. Del Sero,
18. Romani, L., F. Bistoni, K. Perruccio, C. Montagnoli, R. Gaziano, S. Bozza,
6312 TLR9 AND IDO IN EXPERIMENTAL AUTOIMMUNE DIABETES
176: 6752–6761.
20. Fallarino, F., U. Grohmann, Y. Sou, B. C. McGrath, D. R. Caveren, C. Vacca,
727–738.
1150: 146–148.
57. Kiguchi, F., K. Seki, T. B. J. Marsland. 2007. TLR signaling fine-tunes anti-influenza B cell responses
3: e3682.
56. Marta, M., A. Andersson, M. Isaksson, O. Kampe, and A. Lobell. 2008. Unex-
81: 9838–9850.
Mahanonda, R., N. Sa-Ard-Iam, P. Montreekachon, A. Pimkhaokham, K. Yongvachith, M. M. Fukuda, and S. Pichyangkul. 2007. IL-8 and IDO ex-
58: 2–11.
52: 72–79.
28: 74 –79.
50: 1693–1697.
155: 1349–1360.
B.B.22.4CD8+ T cells do not require IL-12 for their expansion and development. J. Immunol.

25. Spaccapelo, R., L. Romani, L. Tonnetti, E. Cenci, A. Mencacci, G. Del Sero,
18. Romani, L., F. Bistoni, K. Perruccio, C. Montagnoli, R. Gaziano, S. Bozza,
6312 TLR9 AND IDO IN EXPERIMENTAL AUTOIMUNE DIABETES
176: 6752–6761.
20. Fallarino, F., U. Grohmann, Y. Sou, B. C. McGrath, D. R. Caveren, C. Vacca,
727–738.
1150: 146–148.
57. Kiguchi, F., K. Seki, T. B. J. Marsland. 2007. TLR signaling fine-tunes anti-influenza B cell responses
3: e3682.
56. Marta, M., A. Andersson, M. Isaksson, O. Kampe, and A. Lobell. 2008. Unex-
81: 9838–9850.
Mahanonda, R., N. Sa-Ard-Iam, P. Montreekachon, A. Pimkhaokham, K. Yongvachith, M. M. Fukuda, and S. Pichyangkul. 2007. IL-8 and IDO ex-
58: 2–11.
52: 72–79.
28: 74 –79.
50: 1693–1697.
155: 1349–1360.
20. Fallarino, F., U. Grohmann, Y. Sou, B. C. McGrath, D. R. Caveren, C. Vacca,
727–738.
1150: 146–148.
57. Kiguchi, F., K. Seki, T. B. J. Marsland. 2007. TLR signaling fine-tunes anti-influenza B cell responses
3: e3682.
56. Marta, M., A. Andersson, M. Isaksson, O. Kampe, and A. Lobell. 2008. Unex-
81: 9838–9850.
Mahanonda, R., N. Sa-Ard-Iam, P. Montreekachon, A. Pimkhaokham, K. Yongvachith, M. M. Fukuda, and S. Pichyangkul. 2007. IL-8 and IDO ex-
58: 2–11.
52: 72–79.
28: 74 –79.
50: 1693–1697.
155: 1349–1360.
20. Fallarino, F., U. Grohmann, Y. Sou, B. C. McGrath, D. R. Caveren, C. Vacca,
727–738.
1150: 146–148.
57. Kiguchi, F., K. Seki, T. B. J. Marsland. 2007. TLR signaling fine-tunes anti-influenza B cell responses
3: e3682.
Corrections

In Fig. 1B, the color key was incorrect. The results and conclusions of the article remain unchanged. The corrected Fig. 1B is shown below. The published legend for Fig. 1 is correct, but is shown again for reference.

FIGURE 1. Higher susceptibility to STZ-induced diabetes in *Tlr9^{−/−}* mice. WT (*n* = 12), *Tlr3^{−/−}* (*n* = 10), and *Tlr9^{−/−}* (*n* = 10) C57BL/6 mice were injected with STZ from day 1, and blood glucose was monitored over time (in A–C, one experiment is depicted of two with similar results). Diabetes was diagnosed in mice with blood glucose level <250 mg/dl. Mice were sacrificed at different times and analyzed for insulinemia (D) and pancreas histology (E and F) and immunohistochemistry (E). A, Average blood glucose in different groups is plotted over time. Data are presented as mean glucose levels ± SD. *, *p* < 0.01 (*Tlr9^{−/−}* vs WT mice). B, Blood glucose concentrations over time in individual WT and *Tlr9^{−/−}* mice. C, Incidence of diabetes over time in TLR-deficient and WT mice, *p* < 0.01 (*Tlr9^{−/−}* vs WT mice). D, Blood insulin was measured by ELISA at day 30. Control, control animals treated with vehicle alone. Data are means ± SD of three experiments. *, *p* < 0.05 (STZ-treated *Tlr9^{−/−}* vs WT mice). E and F, Pancreatic tissues were processed for H&E staining to evaluate insulitis (E and F) and immunostained for insulin (red, E). In fluorescent images, nuclei were counterstained with 4′,6-diamidino-2-phenylindole (blue). Representative islet area for each group (E) at day 40 and the percentages of islets per mouse with different score (F, see Materials and Methods) of lymphocyte infiltration (days 14 and 40) are shown. Percentages represented number of islets of a given score (see Materials and Methods) over total number of islets (30–40 per pancreas). *, *p* < 0.01 and **, *p* < 0.001 (*Tlr9^{−/−}* vs WT mice).

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1090041