Anti-CD28 Antibodies Modify Regulatory Mechanisms and Reinforce Tolerance in CD40Ig-Treated Heart Allograft Recipients

Carole Guillonneau, Céline Séveno, Anne-Sophie Dugast, Xian-Liang Li, Karine Renaudin, Fabienne Haspot, Claire Usal, Joëlle Veziers, Ignacio Anegon and Bernard Vanhove

_J Immunol_ 2007; 179:8164-8171; doi: 10.4049/jimmunol.179.12.8164

http://www.jimmunol.org/content/179/12/8164

References

This article cites 42 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/179/12/8164.full#ref-list-1

Why The JI? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

Subscription

Information about subscribing to _The Journal of Immunology_ is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Anti-CD28 Antibodies Modify Regulatory Mechanisms and Reinforce Tolerance in CD40Ig-Treated Heart Allograft Recipients

Carole Guillonneau, Céline Sévénos, Anne-Sophie Dugast, Xian-Liang Li, Karine Renaudin, Fabienne Haspot, Claire Usal, Joëlle Veziers, Ignacio Anegon, and Bernard Vanhove

Blockade of CD40-CD40 ligand (CD40L) costimulation has been shown to synergize with that of CTLA4/CD28-B7 to promote transplant tolerance. To date, however, CD28-B7 interactions have been prevented using B7-blocking reagents like CTLA4-Ig that inhibit CD28-B7 together with CD40A-B7 interactions. In this study, we have tested anti-CD28 Abs to prevent selectively CD28-B7 interactions while preserving CTLA4-B7 in addition to CD40-CD40L blockade. In the LEW.1W to LEW.1A rat combination, interfering with CD40-CD40L interactions by CD40Ig administration through gene transfer resulted in indefinite heart allograft survival due to the appearance of clonotypic CD8⁺ CD45RClow regulatory T cells that were capable of transferring the tolerant state to naive animals. However, cardiac transplants in these recipients systematically developed chronic rejection lesions. Whereas anti-CD28 Ab monotherapy only delayed acute rejection and failed to induce tolerance, coadministration of anti-CD28 Abs and CD40Ig resulted in the long-term acception of allografts without chronic rejection lesions in 60% of the recipients, reduced the level of intragraft mRNA transcripts for cytokines and immune factors, and fully abrogated alloantibody production.

In addition, the nature of regulatory cells was modified: the CD8⁺ CD45RClow clonotypic T cells described in the CD40Ig-treated animals could not be found in cotreated animals, and the other CD8⁺ CD45RClow cells had no regulatory activity and a different cytokine expression profile. Instead, in cotreated recipients we found IDO-dependent non-T cells with regulatory activity in vitro. Thus, the addition of a short-term anti-CD28 treatment with CD40Ig resulted in decreased heart allograft chronic rejection lesions, complete inhibition of Ab production, and modified regulatory mechanisms. The Journal of Immunology, 2007, 179: 8164–8171.
CTLA4Ig, targeting CD28 might promote the development of regulatory mechanisms (15). Several studies have indeed demonstrated that the selective blockade of CD28 reduced T cell reactivity in autoimmune (16, 17) and transplantation (18). In the rat, the JJ319 modulating CD28-specific mAb (19, 20) induced tolerance to kidney (21, 22) but not to heart allograft (11, 23). However, in a rat model of chronic rejection after heart allograft it promoted long-term survival (23).

The purpose of the current study was to investigate the effect of selectively targeting CD28 in a model of chronic vascularized cardiac allograft rejection following CD40L blockade (10). We hypothesized that the modulation of CD28 expression, by allowing for conserved CTLA4-B7-1/B7-2 interactions, would lead to (or reinforce) regulatory mechanisms and consequently result in full allograft tolerance. Our results identify a critical role for the CD40-CD40L and CD28-B7 costimulatory pathways in the development of different regulatory mechanisms in rat. Coblocker of both pathways resulted in a form of tolerance not supported by Treg cells but associated with IDO-dependant suppressive cells in the non-T cell compartment.

Materials and Methods

Animals and cardiac allograft models

Eight- to 12-wk-old male Lewis.1W (LEW.1W, haplotype RT1u) and Lewis.1A (LEW. 1A, haplotype RT1a) congenic rats (Centre d'Elevage Janvier) differ in their entire MHC regions. Heterotopic LEW.1W heart area) (7).

Recombinant adenovirus coding for CD40Ig and gene transfer

The adenoviral vector for the extracellular portion of mouse CD40 fused to the coding sequences of the constant domains of human IgG1 (AdCD40lg) and the noncoding adenoviral vector Add324 have been described previously (7, 25). For gene transfer, recombinant adenoviruses (5 × 1010 particles/cell) were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated FCS, 2 mM L-glutamine, 100 U/ml penicillin, 0.1 mg/ml streptomycin, 1 mM sodium pyruvate, 1% nonessential amino acids, 1% HEPES, and 5 × 10−5 2-ME (all from Sigma-Aldrich). APCs were myeloid dendritic cells enriched from LEW.1W or third party Brown Norway (BN) spleen fragments digested with collagenase D (2 mg/ml), purified as low density cells from Nycoima density gradient, and cultured overnight in complete medium as previously described (7). MLRs were performed in the absence or presence of n-1-methyl-tryptophan (1-MT) (Sigma-Aldrich) at 200 μM.

Cell purification

Erythrocytes were removed from spleen cell suspensions by hypotonic lysis. T cells were purified from total splenocytes after nylon wool adherence and depletion of 3.2, 2CD161, OX42 (CD11b/c), and OX12 (Ig κ-chain) mAb-reactive cells using magnetic beads (Dynal). CD8+CD45RClow T cells were purified from the spleen using a FACSAlibur flow cytometer (BD Biosciences) as previously described (10).

Mixed lymphocyte reactions

Splenocytes or pure T cells were seeded in triplicate (105 cells/well) into round-bottom 96-well plates (Nunc) and evaluated for their proliferative response against irradiated APCs (5 × 105 cells/well). Cells were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated FCS, 2 mM L-glutamine, 100 U/ml penicillin, 0.1 mg/ml streptomycin, 1 mM sodium pyruvate, 1% nonessential amino acids, 1% HEPES, and 5 × 10−5 2-ME (all from Sigma-Aldrich). APCs were myeloid dendritic cells enriched from LEW.1W or third party Brown Norway (BN) spleen fragments digested with collagenase D (2 mg/ml), purified as low density cells fromNycoima density gradient, and cultured overnight in complete medium as previously described (7). MLRs were performed in the absence or presence of n-1-methyl-tryptophan (1-MT) (Sigma-Aldrich) at 200 μM.

Cell cultures

Cells were cultured for 5 days at 37°C, and 1 μCi of [3H]thymidine deoxyribose was added to each well for the final 8 h of culture. [3H]thymidine incorporation was quantified using a scintillation counter.

Histological and morphometric analysis of cardiac grafts

The upper third of the graft was fixed in paraffin by aldehyde and embedded in paraffin. Five-micrometer coronal sections were stained with hematoxylin-eosin-safron. Tissues were analyzed by a pathologist (K.R.) blinded to the groups and chronic rejection was evaluated as previously described (26). The percentage of vessel occlusion by intimal thickening (≤5% of the surface area); and 2, 20%; 3, 50–80%; and 4, >80%. Vasculitis was quantified using the following scoring system: 0, no occlusion; 1, 0–20%; 2, 20–50%; 3, 50–80%; and 4, >80%. Vasculitis was quantified using the following scoring system: 0, no leukocyte adherence to the endothelium; 1, leukocyte adherence to the endothelium; 2, leukocyte infiltration of the intima; 3, fibrosis of the intima; and 4, leukocyte infiltration of the medium. The percentage of pathological vessels was scored taking into account the presence of vessel occlusion and/or vasculitis. Three sections of at least three different biopsy levels were analyzed for each graft. Only vessels that displayed a clear internal elastica interna were scored.

Immunohistological analysis of myocardial infiltration by mononuclear or polymuclear cells was evaluated blindly using a mixture of two anti-leukocyte CD45 mAbs (OX1 and OX30) by two investigators according to an arbitrary scale and scored as follows: –, negative; +, weakly infiltrated (1 to 5% of the surface area); and ++, strongly infiltrated (15 to 30% of the surface area) (7).

Ab detection

Allantibodies were analyzed by cytofluorometry following the incubation of Con A-activated allergenic spleen cells with diluted (1/10) heat-inactivated rat serum and then with biotin-conjugated F(ab)2 goat anti-rat IgG Abs (γ-chain specific) (Jackson ImmunoResearch Laboratories) or with mouse anti-rat IgM mAb (MARM-7, Technopharm). Ab binding was revealed using FITC-coupled streptavidin or FITC-coupled F(ab)2 γ-chain IgG (Jackson ImmunoResearch Laboratories). Levels of anti-SRBC Abs were assessed similarly using SRBC as targets. Cells were analyzed using a FACScanLibur cytofluorometer (BD Biosciences) and the results were expressed as mean channel fluorescence (MCF) for each serum.

Quantitative RT-PCR

Messenger RNA transcript analysis was performed by real-time quantitative PCR. Total RNA was isolated using TRizol (Invitrogen Life Technologies) and amplified using the SuperScript RNA amplification system (Invitrogen Life Technologies) according to the manufacturer’s instructions. Ten micrograms of RNA were reverse transcribed using a Moloney mu-

mRNA leukemia virus reverse-transcriptase kit (Invitrogen Life Technologies). Real-time quantitative PCR was performed with a GenAmp 7700 sequence detection system (Applied Biosystems) using SYBR Green PCR core reagents (Applied Biosystems). The following primer pairs were used: hypoxantheme phosphoribosyltransferase (HPRT; see Ref. 6); IFN-γ (see Ref. 6); IL-13 (see Ref. 6); IL-2; C-CTTGTGCAACGAGGCCAC-3′ and 5′-GCTGCGGGTGTCCTGCAG-3′; IL-6; 5′-CAACGAGGACTGCTGAGACGACAGTCACCTGACAGC-3′ and 5′-GGTCCCTAGGACCTTCTCCCTGTG-3′; IL-10 (see Ref. 6); heme oxygenase-1 (HO-1; see 27); IDO, 5′-GCTGCCCTACCCTTCTGCTTCT-3′ and 5′-TGCGGTTTCCACCTTAGAGAG-3′; TGFβ1 (see 26); CTLA4, 5′-GGCGACAAATGACCAAGTGC-3′ and 5′-TCTGGAATCTGGCGGATGTGCT-3′; perforin, 5′-AGGCTCCACTACCCTCTGACT-3′ and 5′-GTGTGGTTCTCTCCTCTGCGC-3′; Forkhead box P3 (Foxp3), 5′-CCACGACAGATGGAGCTCCGTAAGAGA-3′ and 5′-CACGTCAGTTGAAAGA-3′. The PCR method and the 2−ΔΔCT quantification method (where △△CT is threshold cycle, after normalization to HPRT values, which have been described previously (28). The arbitrary units (AU) are defined as mean channel fluorescence (MCF) for each serum.

The Journal of Immunology
Grubb’s test was used to determine outliers and p as determined by the gradient of the C_t CD28 mAb (JJ319) from day 0 to day 7 after heart transplantation in the rat strain combination used here, monotherapy with an anti-CD40 Ig-treated allograft recipients. Induction treatment with anti-CD28 Abs induces tolerance in a fraction of CD40Ig-treated allograft recipients.

The 2^(-ΔΔCt) method, the efficiency of the PCR for each gene must be >96%, as determined by the gradient of the C_t = f(log(target DNA)) curve. Specific amplification products were checked by ampiclon melting curves.

**TCR clonotype analysis**

Qualitative and quantitative analyses of the TCR repertoire have been performed at TcLand. Briefly, CDR3 length distribution (CDR3-LD) alteration was analyzed using Immunoscope software (29). CDR3 length distribution alterations were measured according to Gorochov et al. (30). Vβ/HPRT transcript ratios were measured by real-time PCR (31).

**Statistical analysis**

Statistical significance was evaluated using the Mann-Whitney U test (analysis of two groups) or Kruskal-Wallis tests followed by a Dunn’s post hoc test (analysis of more than two groups) and a Kaplan-Meier analysis of (analysis of two groups) or Kruskal-Wallis tests followed by a Dunn’s post hoc test (analysis of more than two groups) or a Kaplan-Meier analysis of survival (log-rank test); p ≤ 0.05 was considered significant. The Grubb’s test was used to determine outliers and p < 0.05 was considered significant.

**Results**

**Induction treatment with anti-CD28 Abs induces tolerance in a fraction of CD40Ig-treated allograft recipients**

In the rat strain combination used here, monotherapy with an anti-CD28 mAb (JJ319) from day 0 to day 7 after heart transplantation resulted in a significant prolongation of allograft survival (18.7 ± 1.6, n = 11, p < 0.0001) as compared with untreated controls that uniformly rejected their graft (6.6 ± 0.5 days, n = 9) (Fig. 1). As previously shown (7), administration of CD40Ig alone resulted in long-term allograft survival (>120 days, n = 27) in 93% of the recipients compared with recipients treated with the noncoding adenovirus (8 ± 0.8 days, n = 9). Treatment with anti-CD28 mAb in addition to the administration of CD40Ig resulted in indefinite allograft survival in all recipients (Fig. 1).

A morphometric analysis of chronic rejection lesions performed 120 days after transplantation indicated that the grafts of CD40Ig-transduced recipients, unlike syngenic grafts, displayed vascular lesions as well as mononuclear cell infiltration (Fig. 2). In the group treated with both CD40Ig and anti-CD28 mAb, nine of the 16 grafts analyzed exhibited no vasculopathy (the pathognomic lesions of chronic rejection), and the other seven displayed vascular chronic rejection lesions undistinguishable from those treated with CD40Ig only. In all allograft recipients, however, a substantial level of fibrosis was noted (data not shown). The cotreated recipients displaying no chronic rejection lesions are thus operationally tolerant and are referred to as “Tol,” and those with chronic rejection lesions are called “CR” recipients.

**Graft infiltration and cytokine expression**

An immunohistological analysis showed that infiltrating cells in the allografts 120 days after transplantation represented up to 30% of the analyzed surface area in the CD40Ig-treated recipients (Table I). The initial administration of anti-CD28 mAb to CD40Ig-treated recipients decreased this cell infiltration. Infiltration in cotreated recipients usually represented only 1–5% of the analyzed surface area in these grafts whether or not the recipients presented chronic rejection lesions. One cotreated recipient displaying chronic rejection lesions, however, presented a slightly stronger infiltration that qualified as moderate (Table I). To analyze cytokine expression associated with tolerance and chronic rejection, total RNA was extracted from the allografts of CD40Ig-treated and

<table>
<thead>
<tr>
<th>Group</th>
<th>OX1/OX30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>−, 0/+</td>
</tr>
<tr>
<td>Syngenic</td>
<td>−, 0/−</td>
</tr>
<tr>
<td>AdCD40Ig only</td>
<td>++, ++/+</td>
</tr>
<tr>
<td>AdCD40Ig plus anti-CD28 CR</td>
<td>++, +, +</td>
</tr>
<tr>
<td>anti-CD28 Tol</td>
<td>++, +, +</td>
</tr>
</tbody>
</table>

*Graft biopsies were analyzed by immunostaining, and the intensity of the staining was evaluated according to an arbitrary scale and scored as follows: −, negative; +, weakly infiltrated (1 to 5% of the surface area); ++, moderately infiltrated (5 to 15% of the surface area); and ++++, strongly infiltrated (15 to 30% of the surface area). The recipients cotreated without chronic rejection lesions were thus operationally tolerant and are referred as “Tol” and those with chronic rejection lesions as “CR.” Each symbol represents one graft.
CD40Ig plus anti-CD28 Abs-treated animals on day 120 posttransplantation. Transcripts for IL-6, perforin, and also for CTLA4, HO-1, TGFβ1, HO-1, perforin, CTLA4, IDO, IFN-γ, IL-2, and IL-10 transcription. Messenger RNA levels were normalized to the level of HPRT and expressed as the fold change relative to corresponding mRNA levels in syngeneic grafts. Individual observations (in AU) are reported with the horizontal bar representing the mean. *p < 0.05; **p < 0.01; ***p < 0.005.

**Figure 3.** Inhibition of cytokine expression in heart grafts of long-surviving recipients following CD28 and CD40L blockade. Total RNA was extracted from cardiac grafts 120 days after gene transfer for the groups receiving AdCD40Ig alone (diamond, n = 10) or in combination with anti-CD28 Abs (triangles, n = 11). Animal that were ascribed as tolerant (Tol) by the histopathological analysis are represented by open triangles, whereas those that had lesions of vasculitis and occluded vessels are represented by black triangles. Total RNA was then analyzed by quantitative RT-PCR for IL-6, TGFβ1, HO-1, perforin, CTLA4, IDO, IFN-γ, IL-2, and IL-10 transcription. Messenger RNA levels were normalized to the level of HPRT and expressed as the fold change relative to corresponding mRNA levels in syngeneic grafts. Individual observations (in AU) are reported with the horizontal bar representing the mean. *p < 0.05; **p < 0.01; ***p < 0.005.

**Figure 4.** Inhibition of alloantibodies in chronic rejection-free anti-CD28 plus CD40Ig-treated recipients. LEW.1A rats were transplanted with LEW.1W hearts. Recipients received on day 0 an i.v. injection of either 10^10 IP of the noncoding adenovirus Addl324 (black dots; n = 6) or 10^10 IP of the AdCD40Ig adenovirus (diamonds; n = 9), or they received a cotreatment combining AdCD40Ig and anti-CD28 Abs (4 mg/kg/day from day 0 to day 7; triangles; n = 11). These cotreated recipients are represented separately according to whether they were ascribed as tolerant (open symbols; n = 5) or as having chronic rejection lesions (black symbols; n = 5) by the histopathological analysis. Naive animals were used as negative control (squares; n = 4). Sera diluted 1/10 were analyzed 120 days after transplantation by flow cytometry after reaction with donor-type spleen cells for the presence of total IgG alloantibodies and the IgG1, IgG2a, or IgG2b subclasses. Note that the y-axis is in logarithmic scale. Individual observations (MCF) are reported with the horizontal bar representing the mean. *p < 0.05; **p < 0.01; and ***p < 0.005.

**Tolerant recipients treated with CD40Ig and anti-CD28 mAb displayed inhibited alloantibody responses**

To assess the mechanisms by which the selective blockade of CD40-CD40L and CD28-B7 pathways resulted in the development of tolerance or chronic rejection lesions, serum levels of alloantibodies were measured in long-surviving recipients 120 days after transplantation. As previously shown (7), IgG alloantibody levels were reduced in the sera of CD40Ig-treated recipients with long-surviving grafts compared with those of control (Addl324)-treated recipients (Fig. 4). The CR recipients in the CD40Ig plus anti-CD28-treated group showed IgG levels not significantly different from those observed in CD40Ig alone-treated recipients. In contrast, this Ab response was considerably reduced and not different from the background in sera of Tol recipients. This reduction was statistically significant for total IgG (MCF of 341.9 ± 64.7 vs 23.3 ± 12.8, p < 0.05), IgG1 (127.6 ± 35 vs 11.6 ± 7.4, p < 0.05) and IgG2b (71.8 ± 16.6 vs 8.4 ± 0.9, p < 0.05).

**Anti-CD28 mAb prevents immunization with SRBC in CD40Ig-treated animals**

To analyze whether the absence of alloimmunization in Tol recipients was specific for alloantigens, we injected SRBC i.v. on the day of transplantation. Within 3 wk, CD40Ig plus 3G8 irrelevant Ab-treated recipients developed IgG and IgM anti-SRBC Abs, whereas CD40Ig plus anti-CD28 mAb-treated recipients did not develop any responses (Fig. 5).
Adoptive transfer of tolerance is modified by anti-CD28 mAb

We demonstrated previously that in CD40Ig-treated recipients of heart allografts, Treg cells from the spleen with a CD8^+ CD45RClow phenotype are able to transfer tolerance to secondary grafted recipients (10). To determine whether anti-CD28 treatment influences the nature of these regulatory cells, we performed additional adoptive transfer experiments. LEW.1A rat recipients of LEW.1W heart transplants were sublethally irradiated (4.5 gray) and injected i.v. on day 0 with 2 × 10^8 spleen cells from AdI324, CD40Ig, or CD40Ig + anti-CD28 mAb-treated LEW.1A recipients of LEW.1W grafts. These spleen cells were collected >120 days after transplantation. Transfer of spleen cells from CD40Ig-treated recipients resulted in the indefinite survival of heart grafts in secondary recipients, demonstrating that regulatory cells in the spleen are sufficient for inhibiting rejection. In contrast, spleen cells from CD40Ig plus anti-CD28 Ab-treated recipients failed to induce any prolongation of survival after transfer (Fig. 6). This indicated that spleen cells from cotreated animals did not contain similar transfer-competent regulatory cells.

Cytokine expression by CD8^+ CD45RClow T cells is modified in CD40Ig plus anti-CD28 mAb-treated animals

To further understand the functional differences in CD8^+ CD45RClow T cell populations, we sorted these cells from the spleen of CD40Ig-treated and CD40Ig plus anti-CD28 mAb-treated animals on day 120 posttransplantation. An average of 5 × 10^6 CD8^+ CD45RClow cells could be extracted from the spleens and the treatments did not modify this number. Total RNA was extracted from these cells, and transcripts for cytokines and regulatory proteins were analyzed by quantitative PCR. Transcripts for IFN-γ and TGFβ were significantly reduced in CD40Ig plus anti-CD28 mAb-treated recipients, as compared with CD40Ig treated alone recipients. The strongest difference appeared to be the expression of IFN-γ, because no expression could be measured in CD8^+ CD45RClow T cells from naive animals. B. Quantitative analysis of TCR Vβ11 transcripts with an 8-aa-long CDR3 region (L8). Messenger RNA was extracted from CD8^+ CD45RClow T cells purified from the spleen of naive animals (n = 3) or from heart graft recipients treated with CD40Ig alone (n = 4) or combined with anti-CD28 Abs (n = 4). Transcripts were analyzed with the TcLandscape technology, as described in Materials and Methods. Results are mean ratio of Vβ11-L8 transcripts ± SD as compared with HPRT. *, p < 0.05; **, p < 0.01. Dotted line represents the previously published (see Ref. 10) messenger RNA level of the indicated cytokine in CD8^+ CD45RClow T cells from naive animals.

Adoptive transfer of tolerance is modified by anti-CD28 mAb

We demonstrated previously that in CD40Ig-treated recipients of heart allografts, Treg cells from the spleen with a CD8^+ CD45RClow phenotype are able to transfer tolerance to secondary grafted recipients (10). To determine whether anti-CD28 treatment influences the nature of these regulatory cells, we performed additional adoptive transfer experiments. LEW.1A rat recipients of LEW.1W heart transplants were sublethally irradiated (4.5 gray) and injected i.v. on day 0 with 2 × 10^8 spleen cells from AdI324, CD40Ig, or CD40Ig + anti-CD28 mAb-treated LEW.1A recipients of LEW.1W grafts. These spleen cells were collected >120 days after transplantation. Transfer of spleen cells from CD40Ig-treated recipients resulted in the indefinite survival of heart grafts in secondary recipients, demonstrating that regulatory cells in the spleen are sufficient for inhibiting rejection. In contrast, spleen cells from CD40Ig plus anti-CD28 Ab-treated recipients failed to induce any prolongation of survival after transfer (Fig. 6). This indicated that spleen cells from cotreated animals did not contain similar transfer-competent regulatory cells.
Anti-CD28 Abs prevent amplification of clonotypic CD8+ CD45RClow Treg cells

We had observed that heart transplant recipients treated with CD40lg developed an accumulation of the Vβ11 family transcripts as well as an alteration of the Gaussian profile of the CDR3 length distributions in this Vβ family within the CD8+ CD45RClow T cell population, with an increased representation of transcripts with an 8-aa-long CDR3 (10). In this study, we determined that this accumulation did not occur in the CD8+ CD45RClow T cell population sorted from CD40lg-treated animals that also received anti-CD28 Abs (Fig. 7B), demonstrating that the public TCR response to common donor Ag(s) in the CD8+ CD45RClow regulatory T cells was absent.

IDO-dependant non-T cell-based regulatory mechanisms in tolerant recipients treated with CD40lg plus anti-CD28 mAb

To investigate regulatory mechanisms that might contribute to the tolerant state in the absence of transfer-competent regulatory T cells, the proliferative response of splenocytes from controls or CD40lg-treated recipients with or without anti-CD28 Abs was analyzed on day 120 posttransplantation. The splenocytes from long-surviving graft recipients consistently displayed decreased proliferative responses to donor-type APCs (27.4 ± 5, 52.2 ± 9.8, and 28.7 ± 14.2% for CD40lg, CR, and Tol cotreated recipients, respectively) as compared with Addl324-treated controls (considered as 100%, n = 6) (Fig. 8A). The unresponsiveness of spleen cells was not donor specific because it was also observed when third party BN APCs were used as stimulators (30.1 ± 6.3, 51.3 ± 8, and 42 ± 14.3% for CD40lg, CR, and Tol recipients, respectively) (Fig. 8A). In contrast with unfractionated splenocytes, the proliferation of purified T cells stimulated by donor and third party APCs showed no significant difference between the groups (Fig. 8B). These observations suggested that alloreactivity was controlled by non-T cells in the spleen and that the CD8+ CD45RClow T cells identified by transfer experiments have no suppressive activity in vitro under the conditions used here. To further characterize this regulatory mechanism dependent on non-T cells, we added 1-MT, an inhibitor of IDO, to the culture medium in coculture experiments, however spleen cells from CD40lg-treated recipients did not respond normally in a MLR (Fig. 8B). Because unfractonated spleen cells from the spleen (Fig. 8B) and had no regulatory activity in vitro (Fig. 8E). Because unfractionated spleen cells presented reduced proliferation capacities against APCs, we hypothesized that a control of alloreactivity should occur through the action of suppressive non-T cells. In coculture experiments, however, spleen cells from CD40lg-treated recipients had no suppressive activity on naive T cells (Fig. 8D).

Discussion

In this study, we demonstrated that the perioperative addition of anti-CD28 Abs to CD40lg treatment reinforces the tolerance to a cardiac allograft and modifies the regulatory mechanisms. We previously demonstrated that the administration of CD40lg to heart transplant rat recipients induced CD8+ CD45RClow regulatory T cells in the spleen that were able to transfer tolerance to secondary recipients (10). In the present study we also observed in this model that despite their suppressive activity in vivo after transfer (Fig. 6), T cells from the spleen responded normally in a MLR (Fig. 8B) and had no regulatory activity in vitro (Fig. 8E). Because unfractionated spleen cells presented reduced proliferation capacities against APCs, we hypothesized that a control of alloreactivity should occur through the action of suppressive non-T cells. In coculture experiments, however, spleen cells from CD40lg-treated recipients had no suppressive activity on naive T cells (Fig. 8D).

Thus, in vitro neither T cells nor non-T cells from CD40lg-treated recipients could block a naive MLR whereas the alloreactivity of recipient splenocytes was inhibited. This suggested a form of suppression active only on primed alloreactive T cells. In Tol recipients treated with anti-CD28 Abs in addition to CD40lg, the regulatory mechanism appeared different. First, the adoptive transfer of spleen cells failed to transfer tolerance to secondary recipients (Fig. 6). Second, the transfer-competent CD8+ CD45RClow Treg...
cells identified in CD40lg-treated recipients (10) presented a modified cytokine profile; they contained no messenger for IFN-γ and expressed low levels of TGFβ (Fig. 7A), two cytokines implicated in the suppressive activity of CD8+ T cells (32, 33). In contrast, they presented more transcripts for IL-10 and IL-2, possibly indicating an activated rather than a regulatory profile. Messenger RNA for TGFβ and IFN-γ were also found reduced in graft biopsies from anti-CD28 Abs plus CD40lg-treated recipients as compared with CD40lg treatment alone (Fig. 3), pertaining to the correlation between the expression of these cytokines, the presence of CD8+CD45RClow Treg cells, and their regulatory properties. In addition, the expansion of CD8+CD45RClow T cells with a Vβ11 CDR3-L8 clonotype was completely abrogated in CD40lg-treated recipients that also received anti-CD28 Abs (Fig. 7B). These data strongly support the idea that in CD40lg-treated graft recipients, clonotypic CD8+CD45RClow T cells are the major regulatory mechanism and that these cells do not develop if anti-CD28 Abs have been initially administered. A third observation pointing to differences between CD40lg and cotreated recipients was that the proliferation of alloreactive T cells from the spleen was repressed by non-T cells (Fig. 8, A and B) and that this was under the control of IDO in cotreated animals (Fig. 8C). Together, our data indicate that anti-CD28 Abs have induced a shift from a system where transfer-competent regulatory CD8+CD45RClow T cells presumably interacting with still undefined APCs in a tolerogenic manner control effector T cells to a situation where these cells have not been selected and where a suppression is supported only by IDO-dependent non-T cells.

It was previously demonstrated that CD28 is required for thymic central CD4+CD25+ Treg development (34) and homeostasis (35) but not for its suppressive function (36). For CD8+ Treg cells, a role of CD28 has not been clear so far; whereas CD8 cells can respond efficiently to Ag in the absence of CD28 costimulation, peripheral tolerance of CD8+ T cells does not occur in vivo in the absence of CD28 (37). In contrast, the expression of CD28 molecules is not necessary for CD8+ Treg generation after contact with B7+ iris pigment epithelial cells (38). Also, after induction therapy in transplantation, suppressive T cells of the CD8+CD28− phenotype have been described (39), but whether CD28 is initially required for their development was not elucidated. In addition, regulatory CD8+CD45RClow cells do not express detectable levels of CD28 (10). In this study we have demonstrated that CD8+CD45RClow T cells were present in similar numbers in the spleen but modified their cytokine expression profile and lost their regulatory activity in vivo when heart graft recipients were treated with anti-CD28 Abs in addition to CD40lg. The TCR repertoire analysis also demonstrated that anti-CD28 Abs prevented the expansion of regulatory CD8+CD45RClow T cells in cotreated animals. Therefore, although the majority of CD8+CD45RClow cells from CD40lg-treated animals are CD28+ (10), it is possible that they originate from CD8+CD28− cells and that the anti-CD28 mAb used here directly interfered with the acquisition of the regulatory properties of CD8+CD45RClow cells.

Heart allografts in recipients treated with CD40lg were still strongly beating 4 mo posttransplantation but systematically presented vasculitis and cell infiltration, the pathognomonic characteristics of CR. This indicated that treatment with CD40lg inhibited acute graft rejection but did not induce full transplant tolerance. In comparison, 50–60% of heart allografts cotreated with anti-CD28 mAb had no lesions of CR and were thus fully tolerated, excepting that they still presented substantial levels of fibrosis. The remaining 40% of heart allografts, presenting CR lesions despite the co-treatment, could not be distinguished from the tolerant recipients by virtue of their anti-mouse Ab response that could otherwise blunt the immunoregulatory effect of anti-CD28 Abs (data not shown). Also, the circulating levels of CD40lg were similar in Tol and CR cotreated recipients (in all cases >100 μg/ml in the serum on day 10; data not shown). Cellular infiltration and intagraft cytokine expression were reduced in grafts from recipients treated with CD40lg plus anti-CD28 Abs as compared with CD40lg treatment alone, whether or not these grafts were found to be devoid of vascular lesions. Infiltration and cytokine expression levels therefore do not seem to be critical parameters correlated with vasculopathy. Rather, alloantibodies were found absent in Tol recipients while they were low but detectable in CR recipients (Fig. 4). It has been previously suggested that Ab induction (40) and chronic allograft vasculopathy (4, 7) are driven primarily by costimulation-dependent adaptive immunity that, in the context of CD40L blockade, might be driven by CD28. Blocking CD28 should therefore be effective in controlling pathogenetic costimulation pathway activation and in preventing alloantibody production and chronic allograft vasculopathy. This effect on Ab responses was not restricted to alloantigens, because the coadministration of anti-CD28 Abs with CD40lg also abrogated Ab responses to SRBC (Fig. 5). The data presented here confirm, in the context of transplantation, a synergy between CD40lg and anti-CD28 Abs in inhibiting Ab responses.

Inhibiting the CD28-B7 pathway by using anti-CD28 Abs might result in a different outcome than with B7 antagonists such as CTLA4-Ig. Indeed, B7 molecules also interact with CTLA4, leading to a direct repression of T cell responses (41) and to the synthesis of IDO by dendritic cells (12). We therefore hypothesized that blocking CD28 and not B7 might reinforce immunosuppression and promote tolerance. The in vivo relevance of an unopposed CTLA4-B7 interaction for transplant tolerance has been illustrated by experiments showing that CTLA4-Ig blockade prevents tolerance induction (14, 42). We observed here an impact of CD40lg plus anti-CD28 Abs on chronic rejection, whereas in heart transplantation in mice anti-CD40L plus CTLA4-Ig treatment did not result in the complete abrogation of CR (3). Therefore, blocking B7 results in a different outcome in transplantation than blocking CD28, although this is probably also model dependent.

In conclusion, following heart transplantation in the rat treated with CD40lg, anti-CD28 Abs modified the properties of CD8+CD45RClow cells, blunted Ab responses, and reduced the development of CR lesions. It seems that the loss of CD8+CD45RClow T cell-based regulation does not account for the reduction of CR lesions, because both parameters were not correlated; all CD40lg plus anti-CD28 cotreated recipients presented an absence of suppressive CD8+CD45RClow T cells whereas 40–50% still presented CR lesions. Rather, a reinforced regulatory activity in the non-T cells compartment and the absence of a specific Ab response are the parameters most clearly associated with an absence of CR lesions.

Acknowledgments

We are grateful to Helga Smit, Bernard Martinet, and Emmanuel Merieau for animal care. We thank the Vector Core of the University Hospital of Nantes (Nantes, France), supported by the Association Francaise Contre les Myopathies, for producing the adenoviral vector used in this study. We thank TcLand S. A. for TcLandscape analyses.

Disclosures

The authors have no financial conflict of interest.

References


