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BRIEF REVIEWS

IMMUNOLOGY

THE O
FJOURNAL

2B4/CD48-Mediated Regulation of Lymphocyte
Activation and Function1

Erika Assarsson,2*† Taku Kambayashi,‡ Catrine M. Persson,* Benedict J. Chambers,* and
Hans-Gustaf Ljunggren2*

2B4 (CD244) is a member of the CD2 subset of the Ig su-
perfamily. This molecule is expressed on innate immune cells,
including NK cells, and on subsets of T cells. The 2B4 mole-
cule interacts with CD48, which is widely expressed on he-
mopoietic cells. Although earlier reports demonstrated a role
for 2B4 as an activating receptor in both mice and humans,
recent studies of 2B4-deficient mice have suggested that 2B4
functions predominantly as an inhibitory receptor in mice.
In addition, 2B4 may also act as a costimulatory ligand for
cells expressing CD48. Thus, the 2B4 molecule is more mul-
tifunctional than previously understood. In this study, we de-
lineate the current view of 2B4-CD48 interactions among
lymphocytes and other cells. The Journal of Immunology,
2005, 175: 2045–2049.

N umerous receptor/ligand pairs are important in the
cross-talk among cells of the immune system (1–3).
One group of such molecules is the CD2 subset of the

Ig superfamily, which includes CD2, CD2F-10, CD48, CD58,
CD84, CD150 (signaling lymphocytic activation molecule),
CD229 (Ly9), CD244 (2B4), B lymphocyte activator macro-
phage expressed, CS1, and NK-T-B Ag (NTB-A) (4). These
molecules commonly bind to each other (homotypic adhesion)
or to other members of the same family (heterotypic adhesion).
The functions of many of these molecules have been described
elsewhere (5–8). The present review focuses on new data pro-
viding information on the functional outcome of interactions
between 2B4 and CD48, with implications for lymphocyte-
lymphocyte interactions.

Expression of 2B4 and its interaction with CD48

2B4 is expressed on many cells belonging to the innate arm of im-
munity. In mice, 2B4 is found on all NK cells, subsets of ��� T
cells, monocytes, mast cells, as well as on a subset of memory-like
CD8� T cells (6, 9, 10). In humans, 2B4 is expressed on NK cells
and ��� T cells, �50% of CD8� T cells, and on subsets of ba-

sophils, monocytes, and eosinophils (11–15). In addition, T cells
have been shown to acquire 2B4 expression under certain activat-
ing conditions. For instance, murine CD8� T cells acquire 2B4
expression upon cytokine stimulation in vitro and during viral in-
fection in vivo (10). The fraction of 2B4�CD8� T cells increases
in HIV-positive patients with the progression of disease (16). 2B4
is also found on a large proportion of effector/memory CD4� T
cells in CMV-infected individuals (17).

In both mice and humans, 2B4 binds to CD48 (18, 19), which
is broadly expressed on hemopoietic cells (20–23). At least in the
mouse, 2B4 does not appear to bind any other molecule than
CD48 (24). CD48 expression is up-regulated upon viral infection
and by stimulation of IFN-�� and IFN-� (6, 23).

Activating and inhibitory functions of the 2B4 receptor

Murine NK cells and T cells express two isoforms of 2B4, 2B4
short (2B4S) and 2B4 long (2B4L), derived from alternative
mRNA splicing of its cytoplasmic domains (25, 26). The cyto-
plasmic tail of 2B4L contains seven potential tyrosine phosphor-
ylation sites, five of which are unique to 2B4L (25, 26). Four of
these sites resemble immunoreceptor tyrosine-based switch mo-
tifs (ITSM).3 2B4S contains only one ITSM (the one most ad-
jacent to the membrane), suggesting that the two receptors sig-
nal differently. In fact, 2B4S and 2B4L have been reported to be
activating and inhibitory, respectively, when expressed in the
rat NK cell line RNK-16 (26).

Initial studies suggested that 2B4 was an activating receptor
on murine NK and T cells (6). Ab-mediated stimulation of 2B4
enhanced lytic activity and IFN-� production by NK cells in
vitro. The recent generation of 2B4-deficient mice (27) has al-
lowed more direct studies on the functional role of 2B4 on
murine NK cells both in vitro and in vivo. Surprisingly, 2B4-
deficient NK cells displayed enhanced cytotoxicity against
CD48-expressing cells in vitro (27, 28). Furthermore, in the
absence of functional 2B4-CD48 interactions between the NK
cell and the target cell, the IFN-� production by NK cells was
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enhanced. Finally, 2B4-deficient mice eliminated CD48-ex-
pressing tumor cells more efficiently than wild-type mice (28).
These results suggest that 2B4 acts as an inhibitory molecule on
murine NK cells. The discrepancy between these and the earlier
findings is not clear. However, one possible explanation is that
the anti-2B4 Ab used in the initial experiments blocked an in-
hibitory interaction between 2B4 and CD48 rather than cross-
linking 2B4 on the NK cells (28). Further support for an inhib-
itory function of 2B4 has come from the observation that 2B4
accumulation at the interphase between NK cells and CD48-
expressing cells correlates inversely with the ability of the NK
cells to lyse the latter cells (29). The inhibitory receptor func-
tion of 2B4 is interesting per se, as it reveals an MHC-indepen-
dent mechanism of NK cell inhibition (27, 28, 30)

The human 2B4 gene encodes a transcript that is closely re-
lated to murine 2B4L (13, 31) as well as a splice variant that
differs in the extracellular domains (32). Several studies have
demonstrated an activating role for 2B4 on human NK cells.
Anti-2B4-mediated stimulation of NK cells initiates polyphos-
phoinositol turnover and leads to increased intracellular Ca2�

levels, enhanced cytolytic function, and cytokine production
(6). 2B4 can also act as a costimulatory receptor on human NK
cells, enhancing signals from other NK cell receptors under lim-
ited ITAM-mediated activation (33). With respect to induction
of cytotoxicity, it is still not entirely clear whether 2B4 provides
costimulatory signals in the context of other receptor-ligand in-
teractions or whether 2B4 is capable of triggering cytotoxicity
independently of other receptor signals. In contrast to the ob-
servations above, at the early stages during human NK cell dif-
ferentiation, 2B4 seems to function as an inhibitory receptor
(34). It has been suggested that negative 2B4 signaling might
prevent immature NK cells from killing normal autologous
cells and thereby ensuring self-tolerance.

Signal transduction through 2B4

The mechanisms through which 2B4 signals are still under in-
vestigation. NK cell activation through 2B4 is accompanied by
phosphorylation of tyrosine-based motifs in its cytoplasmic tail
and recruitment of the signaling lymphocytic activation mole-
cule-associated protein (SAP) and the Src family kinase Fyn
(35, 36). SAP is a small Src homology 2 domain-containing
protein expressed in NK and T cells (37). X-linked lymphopro-
liferative disease is a severe immune deficiency characterized by
an inability to control EBV infection. X-linked lymphoprolif-
erative patients have a mutated SAP gene (37). As a result, the
SAP protein is either absent or dysfunctional. In these patients,
cross-linking of 2B4 does not only fail to transduce triggering
signals (38–40), but may even mediate inhibition of NK cell
cytolysis (41). This suggests that SAP is essential for the activat-
ing function of 2B4. Cross-linking leads to recruitment of 2B4
to lipid rafts essential for tyrosine phosphorylation (42). The
phosphorylated ITSMs of 2B4 have different functions.
Whereas all four phosphorylated ITSMs can bind to SAP, the
third ITSM can also recruit inhibitory signaling molecules in-
cluding Src homology region 2 domain-containing phospha-
tase 1, Src homology region 2 domain-containing phosphatase
2, SHIP, and Csk (36). It has been shown that SAP cannot bind
to 2B4 at the same time as either of these molecules (36). There-
fore, SAP may block inhibition of NK cells by preventing neg-
ative signaling molecules from binding 2B4. It has also been
shown that SAP can recruit Fyn to the cytoplasmic ITSM of

2B4 (35, 36). Fyn can in turn induce further ITSM phosphor-
ylation and subsequent recruitment of downstream effector
molecules and activation of the NK cell (35, 36). Thus, the
presence or absence of SAP in the cell may affect the 2B4 recep-
tor function. In this regard, it is interesting that viral infections
can up-regulate SAP expression in mice (43). SAP is closely re-
lated to EWS/FliI-activated transcript 2 (EAT-2). Similar to
SAP, EAT-2 encodes a free Src homology 2 domain that binds
a specific tyrosine motif in the cytoplasmic tail of some recep-
tors of the CD2 subset of the Ig superfamily (44). In contrast to
SAP, little is known about the biological role of EAT-2 in asso-
ciation with 2B4 (8). 2B4 and CD48 are both located to lipid
rafts, also called glycolipid-enriched microdomains (45). In the
lipid rafts, 2B4 associates with the linker for the activation of T
cells (LAT). In the absence of LAT, 2B4-mediated signaling is
impaired (45). LAT may thus be an important intermediate in
2B4-mediated signaling.

T cells costimulate each other through 2B4-CD48 interactions

It is well established that T cells are regulated by signals gener-
ated from interactions with other cells, e.g., APC, epithelial
cells, and stromal cells, involving the TCR, costimulatory re-
ceptors, and adhesion molecules. Some reports also show that
interactions taking place between individual T cells are critical
for certain T cell responses. For example, it has been suggested
that B7-expressing T cell clones can stimulate each other
through interactions with CD28 (46). Furthermore, CD40-
CD40 ligand interactions between CD4� and CD8� T cells
have been demonstrated to be important for memory formation
in some model systems (47).

We have shown that 2B4-expressing activated T cells, or tu-
mor cells transfected with 2B4, enhance the proliferation of
CD48-expressing T cells stimulated with specific Ag or IL-2
(10, 24). Blocking 2B4 on the stimulatory cells or CD48 on the
responding T cells reduced proliferation. Furthermore, when
naive T cells were stimulated with anti-CD3 Ab in short-term
assays, the number of CD69-expressing cells increased in the
presence of 2B4-expressing cells. These findings led us to spec-
ulate that 2B4 expressed on activated CD8� T cells may act as
a costimulatory ligand for CD48 on neighboring T cells, en-
hancing proliferation and other effector functions of the latter.

In relation to this, a recent study nicely demonstrated that
transduction of TCR-transgenic T cells with either 2B4S or
2B4L increased the cytotoxic activity against both CD48� and
CD48� peptide-pulsed target cells (48). These results show
that 2B4-CD48 interactions take place between the T cells and
improve T cell cytotoxicity independently of CD48 expression
on the target cells. The increased cytotoxicity is efficiently
blocked when the anti-CD48 Ab was present both during the
transduction and during the cytotoxicity assay (48). In this sys-
tem, it was speculated that signals were transduced downstream
of 2B4. However, an alternative explanation for the results
above is that 2B4 acted as a ligand for CD48, accounting for
some of the phenomena observed. This alternative interpreta-
tion is supported by studies showing that 2B4-transfected tu-
mor cells enhance activation and proliferation of T cells that
express CD48 (24). In line with this, immobilized anti-CD48
Ab increases CD40-mediated activation of human B cells, add-
ing further support to the notion of a costimulatory role for
CD48 (49). It shall be pointed out, however, that none of the
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above-discussed interpretations can be excluded on the basis of
the results discussed above.

2B4 and CD48 both reside in glycolipid-enriched microdo-
mains, which contain many other molecules involved in signal-
ing (45). Therefore, it is also possible that 2B4 and CD48 bind-
ing leads to adhesion and therefore prolongs cellular interaction
and facilitates signaling by other molecules.

How CD48 transmits signals is not clear. Although CD48 is
a GPI-anchored molecule and lacks intracytoplasmic domains,
it can physically associate with G proteins and to members of
the Src family of tyrosine kinases in lipid rafts (50). For exam-
ple, Lck has been reported to associate with CD48 (51, 52). A
recent report has also described a complex formation among the
IL-18R�, IL-18, and CD48 that in turn binds the IL-18R�.
This complex has been implicated in delivering the IL-18 signal
(53). If the latter finding has any relation to the present discus-
sion on 2B4-mediated interactions with CD48 remains to be
investigated.

NK cells costimulate each other through 2B4-CD48 interactions

The studies above suggest an important role for interactions be-
tween 2B4 and CD48 in the course of T cell activation and
proliferation. Recent data suggest that similar interactions may
take place between NK cells. We have demonstrated that IL-2-
induced proliferation of both murine and human NK cells is
reduced when either anti-2B4 or anti-CD48 Abs are added to
the cultures (24). These results support findings by Valiante
and Trinchieri (11), who have shown that human NK cells pro-
liferate poorly in response to IL-2 and IL-12 in the presence of
anti-2B4 Ab. A recent study has extended these two observa-
tions. Using gene-deficient mice, Lee et al. (54) found that 2B4-
CD48 interactions are essential for IL-2-driven expansion and
activation of murine NK cells. In the absence of a functional
2B4-CD48 interaction between NK cells, cytotoxicity and
IFN-� secretion upon tumor target exposure were severely im-
paired (54). However, it is still not entirely clear from any of the
above-discussed experiments whether 2B4 acts exclusively as a
receptor on the NK cells or whether 2B4 also acts as a ligand
that costimulates other NK cells through interaction with
CD48 (compare discussion above regarding 2B4-CD48 inter-
actions in T cell-T cell interactions). Noteworthy, the expres-
sion of 2B4 is up-regulated on NK cells upon activation with
poly(I:C) in vivo (55). Thus, 2B4-CD48 interactions as well as
interactions between other members of the CD2 subset of the
Ig superfamily could be important for rapid expansion of acti-
vated NK cells at sites of infection and/or inflammation.

NK cells costimulate T cells through 2B4-CD48 interactions

NK cells produce a number of cytokines, including IFN-�,
TNF-�, IL-13, and GM-CSF. These cytokines provide impor-
tant immunoregulatory properties through which NK cells can
influence the outcome of adaptive immune responses (56). NK
cell depletion in mice impair CTL responses in different models
of infection and cancer as well as the development of adaptive
immune responses in experimentally induced autoimmunity
and hypersensitivity reactions (57, 58). Although cytokine pro-
duction by NK cells clearly influences T and B cell responses, it
has until recently been unclear whether NK cells affect adaptive
immune cell functions through direct cellular interactions.

In a recent study, it was demonstrated that activated NK cells
significantly increases the proliferation of anti-CD3-stimulated

CD8� and CD4� T cells (24). This required direct physical
contact between the NK cells and the T cells. The proliferation
of T cells was reduced to background levels upon blocking of
2B4 or CD48. These findings argue for a scenario in which NK
cell-mediated enhancement of T cell proliferation involves
physical contact, although additional contribution of secreted
factors cannot be excluded. The addition of NK cells to anti-
CD3-stimulated CD8� T cells also enhances CD69 expression
on the CD8� T cells, and this phenomenon was dependent on
2B4-CD48 interactions (24). These findings suggest a role for
2B4 and CD48 in interactions between NK cells and T cells.

Conclusions

Altogether, the studies reviewed in this article suggest that in-
teractions between 2B4 and CD48 may have at least three dif-
ferent outcomes in responding lymphocytes (Fig. 1). On differ-
ent subsets of lymphocytes, the 2B4 molecule may function
either as an stimulatory/costimulatory receptor or as an inhib-
itory receptor upon interaction with CD48-expressing cells. In
parallel, the 2B4 molecule may function as a costimulatory li-
gand upon interaction with CD48-expressing cells. If the rea-
soning above holds true, 2B4 now joins a growing list of mol-
ecules that have a bidirectional function, i.e., transducing
stimulatory/costimulatory or inhibitory signals into the ex-
pressing cell and, in addition, acting as a ligand to stimulate/
costimulate CD48-expressing cells. In addition, the signals
above may operate simultaneously. Less exciting is the possibil-
ity that 2B4-CD48 interaction merely leads to adhesion, which
facilitates signaling through other receptor/ligand pairs. Al-
though the focus of this review has been on 2B4-CD48 inter-
actions among NK cells and T cells, quite possibly these inter-
actions may also occur between other sets of lymphocytes, such
as B cells and NKT cells. The findings should open up new areas

FIGURE 1. Principles of 2B4-CD48 interactions. a, 2B4 acts as a stimula-
tory/costimulatory receptor upon interactions with CD48 on the neighboring
cell. b, 2B4 acts as an inhibitory receptor upon interactions with CD48 on the
neighboring cell. c, CD48 acts as a stimulatory/costimulatory receptor upon
interacting with 2B4 on the neighboring cell. 2B4 (red, transmembrane),
CD48 (green, GPI linked). �, Stimulation/costimulation; �, inhibition.
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of research, including studies on the role of these interactions in
infectious disease and tumor models.
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