Cutting Edge: MyD88 Is Required for Resistance to *Toxoplasma gondii* Infection and Regulates Parasite-Induced IL-12 Production by Dendritic Cells

Charles A. Scanga, Julio Aliberti, Dragana Jankovic, Florence Tilloy, Soumaya Bennouna, Eric Y. Denkers, Ruslan Medzhitov and Alan Sher

J Immunol 2002; 168:5997-6001; doi: 10.4049/jimmunol.168.12.5997

http://www.jimmunol.org/content/168/12/5997

References This article cites 31 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/168/12/5997.full#ref-list-1

Why The JI? Submit online.

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Host resistance to the intracellular protozoan Toxoplasma gondii is highly dependent on early IL-12 production by APC. We demonstrate here that both host resistance and T. gondii-induced IL-12 production are dramatically reduced in mice lacking the adaptor molecule MyD88, an important signaling element used by Toll-like receptor (TLR) family members. Infection of MyD88-deficient mice with T. gondii resulted in uncontrolled parasite replication and greatly reduced plasma IL-12 levels. Defective IL-12 responses to T. gondii Ags (soluble tachyzoite Ag (STAg)) were observed in MyD88−/− peritoneal macrophages, neutrophils, and splenic dendritic cells (DC). In contrast, DC from TLR2- or TLR4-deficient animals developed normal IL-12 responses to STAg. In vivo treatment with pertussis toxin abolished the residual IL-12 response displayed by STAg-stimulated DC from MyD88−/− mice. Taken together, these data suggest that the induction of IL-12 by T. gondii depends on a unique mechanism involving both MyD88 and G protein-coupled signaling pathways. *The Journal of Immunology, 2002, 168: 5997–6001.*

Innate immunity to pathogens is thought to be triggered by pattern recognition receptors on APC that detect and respond to conserved structural motifs on invading microorganisms (1, 2). An important class of pattern recognition receptors are the Toll-like receptors (TLR), a family of evolutionarily conserved germline-encoded transmembrane receptors that have been shown to stimulate APC function in response to defined lipid, protein, and nucleic acid structures present on bacterial, fungal, and viral pathogens (2). Recently, it has been shown that triggering of the TLR family member TLR2 plays a role in the initiation of cytokine responses to a protozoan pathogen, Trypanosoma cruzi, suggesting that TLR may be also involved in the innate recognition of this group of eukaryotic microorganisms (3).

In the present study, we have further examined the possible involvement of TLR in innate immunity to protozoa, focusing on the induction of host resistance to the apicomplexan parasite Toxoplasma gondii. During early infection, this parasite stimulates a potent IL-12 response that leads to IFN-γ-dependent control of its replication (4). In turn, a series of in vitro and in vivo studies have demonstrated that dendritic cells (DC), as well as neutrophils and IFN-γ-primed macrophages, produce IL-12 in response to parasite stimulation (5–7). More recently, the chemokine receptor CCR5 has been shown to play a major role in T. gondii-induced IL-12 production by DC (8). Correlating with this observation, CCR5-deficient animals exhibit increased susceptibility to the parasite (8), succumbing by 20 days postinfection (J. Aliberti and A. Sher, unpublished data).

To determine the possible function of TLR in the induction of IL-12-dependent host resistance to T. gondii, we tested the requirement for the TLR-associated adapter protein MyD88 in control of parasite infection. MyD88 has been shown to be a critical signaling element for most TLR as well as IL-1R family-triggered responses (9), and APC from MyD88-deficient mice have been shown to mount defective IL-12 responses to a number of microbial stimuli (10–12). As reported here, MyD88-deficient mice infected with T. gondii displayed a complete loss in acute resistance to infection, a defect associated with impaired IL-12 production by DC, macrophages, and neutrophils. These findings implicate TLR triggering as a critical step in the initiation of innate immunity to T. gondii and in the case of DC argue that full induction of IL-12 by this pathogen involves both G protein-coupled and MyD88-dependent signaling pathways.

Materials and Methods

Experimental animals
MyD88+/−, TLR-2−/−, and TLR-4−/− mice (13–15) on a partially backcrossed 129/Ola × C57/B6 background were kindly provided by Drs. S. Akira (Osaka University, Osaka, Japan) and D. T. Golenbock (University of Massachusetts, Worcester, MA). These animals, along with CCR5−/− mice (16), were bred and maintained at an American Association of Laboratory Animal Care-accredited National Institute of Allergy and Infectious Diseases animal facility. Wild-type control mice (129/Ola ×
C57BL/6) were obtained from The Jackson Laboratory (Bar Harbor, ME). Mice of both sexes between 5 and 12 wk old were used for experiments.

Parasites, experimental infection, and treatments

Mice were infected with 20 cysts of the avirulent ME49 *T. gondii* strain by i.p. inoculation and cumulative mortality was determined (17). In vivo tachyzoite growth was assessed at 5 days after infection by microscopic examination of Diff-Quik (Dade Behring, Newark, DE)-stained cytospin smears of peritoneal exudate cells (PEC) (17). RH strain *T. gondii* tachyzoites were maintained in tissue culture as previously described (6) and used to prepare soluble tachyzoite Ag (STAg) (18). For in vivo stimulation of DC, mice were i.p. injected with 5 µg STAg or with PBS alone, and splenocytes were harvested 6 h later (19). In some experiments, mice received pertussis toxin (PTx, 400 ng i.v.) 30 min before STAg or PBS injection (20).

Cell isolation and in vitro stimulation

For measurement of ex vivo cytokine production, single-cell suspensions were prepared from spleens and PEC 5 days after infection. PEC were cultured at 4 × 10^6 cells/well in 200 µl and spleen cells at 4 × 10^6 cells/well in 1 ml medium in the presence or absence of STAg (5 µg/ml) and supernatants were collected 3 days later. In some wells, 20 µg/ml blocking mAb to CD4 (GK1.5) and CD8 (2.43) were added to assess the contribution of these T cell subsets as previously described (21).

Neutrophils were isolated from bone marrow of noninfected mice as described elsewhere (22) and plated at 2–2.5 × 10^6 cells/well. Cells were 95% neutrophils based on microscopic examination of stained preparations. Peritoneal macrophages were prepared from thioglycollate-elicited PEC (17) by overnight plating at 5 × 10^6 cells/well in the presence or absence of 100 U/ml murine rIFN-γ (Genentech, South San Francisco, CA) as a priming signal followed by removal of nonadherent cells. DC were isolated by low-density separation of collagenase-treated spleen (5) and plated at 1 × 10^6 cells/well.

For in vitro stimulation, macrophages and DC were exposed to STAg (20 µg/ml) and neutrophils to either STAg (100 µg/ml) or live RH tachyzoites (1 × 10^6/well). Supernatants were collected at 16 h for cytokine measurements.

IL-12 and IFN-γ measurements

IL-12p40 and IFN-γ levels were assayed by ELISA as previously described (17). IL-12p70 was measured using a commercial ELISA kit (R&D Systems, Minneapolis, MN).

Statistical analyses

The statistical significance of differences in data means was analyzed using an unpaired, two-tailed Student’s *t* test.

Results and Discussion

MyD88-deficient mice fail to control *T. gondii* infection

To evaluate the role of MyD88 in host resistance to *T. gondii, MyD88−/−* and control mice were infected with cysts of the avirulent ME49 parasite strain and survival of the animals was monitored. In contrast to control mice that survived for >60 days, MyD88-deficient animals succumbed to acute infection, dying between 13 and 16 days after parasite inoculation (Fig. 1). The latter mortality kinetics closely resemble those observed for similarly infected IL-12p40-deficient mice (Fig. 1). Since mortality during acute *T. gondii* infection can result either from uncontrolled inflammation (23) or increased parasite replication (17), we also assessed parasite burden in the same animals by enumerating parasitized PEC 5 days postinoculation. A dramatic increase in parasite load was seen in the MyD88−/− vs control mice which was comparable to, if not exceeding, that observed in the IL-12p40-deficient mice (Fig. 1, inset). Thus, MyD88 plays an essential role in host resistance by influencing the control of *T. gondii* replication.

MyD88-deficient mice mount defective parasite-induced IL-12/IFN-γ responses

Host resistance to *T. gondii* in the murine model is mediated by IL-12-dependent IFN-γ production (24). To determine whether impaired resistance of MyD88−/− mice stems from a defect in this pathway, we measured IL-12 and IFN-γ in plasma from 5-day infected mice. The MyD88−/− mice displayed greatly reduced levels of plasma IL-12p40 (Fig. 2A) and IL-12p70 (data not shown). Plasma IFN-γ levels in MyD88-deficient mice also were much lower relative to control animals (Fig. 2B). Nevertheless, IFN-γ production in the MyD88−/− mice was significantly greater than that observed in IL-12p40-deficient animals (Fig. 2B). To confirm this defect at the cellular level, we examined IFN-γ production by spleen cells from the same animals after in vitro restimulation with STAg. MyD88-deficient animals showed dramatically reduced IFN-γ production, again slightly elevated over that displayed by IL-12p40-deficient mice (Fig. 2C). Experiments adding blocking Abs to CD4 and/or CD8 to these cultures indicated that the IFN-γ response of control mice is only partially dependent on T cells (Fig. 2C), consistent with the previously described role of NK cells as a major source of this cytokine during acute infection (4, 7). In contrast, the residual response seen in the MyD88−/− mice was found to be totally CD4+ T lymphocyte dependent (Fig. 2C).

MyD88-dependent signaling regulates *T. gondii*-induced IL-12 production in DC, macrophages, and neutrophils

Previous studies have demonstrated that macrophages, DC, as well as neutrophils produce IL-12 in response to stimulation with *T. gondii* in vitro (7, 8, 25) and, in the case of DC and neutrophils, in vivo (6, 8). To examine whether MyD88 controls IL-12 responsiveness in one or more of these cell types, highly enriched bone marrow-derived neutrophils, splenic DC, and thioglycollate-elicited peritoneal macrophages were stimulated in vitro with STAg or live tachyzoites and IL-12p40 production was measured by ELISA. The STAg-induced IL-12 response observed in IFN-γ-primed macrophages from control mice was completely absent in comparable cell populations from MyD88-deficient mice (Fig. 3A). IL-12 responsiveness was also greatly impaired in neutrophils from MyD88−/− mice stimulated in vitro with either live tachyzoites or with STAg (Fig. 3B). Finally, the IL-12 response of splenic DC was highly reduced in the absence of MyD88 (Fig. 3C) but not to the extent seen in MyD88−/− macrophages and neutrophils. A similar reduction in the DC cytokine response was observed when IL-12p70 was measured rather than p40 (Fig. 3D).

![Figure 1](http://www.jimmunol.org/)

FIGURE 1. MyD88−/− mice fail to control acute *T. gondii* infection. Control mice (■), MyD88−/− mice (○), and IL-12p40−/− mice (△) were infected i.p. with 20 cysts of the ME49 strain of *T. gondii* and survival was monitored. Data are representative of two experiments performed, each with five to eight mice per group. Inset. Percentage (mean ± SD, *n* = 5 mice/group) of tachyzoite-infected PEC from the above animal groups at day 5 after infection.
Effect of MyD88 on T. gondii-induced DC IL-12 production is not the result of impaired TLR2 or TLR4 signaling

Since DC are thought to represent an important cell population in the initiation of cell-mediated immunity to T. gondii (5), we further investigated the effect of MyD88 in a STAg-induced IL-12 response in these cells. We have previously shown that splenic DC recovered from STAg-injected mice produce high levels of IL-12 ex vivo (5). As shown in Fig. 4A, splenic DC from STAg-injected MyD88 \(-/-\) mice showed a highly impaired IL-12p70 response compared with that displayed by DC from comparably injected control mice and indicate that the defect in MyD88-deficient DC function occurs in vivo and in vitro.

MyD88 is an important adapter molecule required for most TLR-dependent signaling responses (2). TLR2 and TLR4 are two TLR previously implicated in antimicrobial responses in vivo (1). Animals deficient in either of these receptors nevertheless mounted normal DC IL-12 responses to injected STAg (Fig. 4A), indicating that the MyD88 defect in T. gondii-induced IL-12 production does not involve either of these TLR.

MyD88 and CCR5 influence T. gondii-induced IL-12 production by DC through independent pathways

Previous studies have demonstrated that the IL-12 response triggered by T. gondii in DC is highly dependent on the chemokine receptor CCR5 (8). The discovery that the same response also partially depends on MyD88 raised the question of whether CCR5 and MyD88 are components of distinct or common pathways involved in signaling for IL-12 production. A side-by-side comparison revealed that MyD88 \(-/-\) and CCR5 \(-/-\) mice display quantitatively comparable defects in the IL-12p70 response to injected STAg (Fig. 4B). To analyze the interdependence of the two defects, we treated mice with PTx, an agent that uncouples the G protein signaling for IL-12 production stems from two independently triggered pathways that either overlap or augment one another.

Our findings establish a major role for MyD88 in IL-12-dependent resistance to T. gondii as well as in parasite-induced IL-12 production by the three principal cell types known to mount this response. Since we were unable to simultaneously identify the involvement of a specific or combination of specific TLR in the pathway leading to parasite-triggered IL-12 synthesis, a role for TLR in innate recognition of T. gondii in this system, although likely, remains to be formally demonstrated. Such a role for TLR...
protein-coupled signaling mediated by the chemokine receptor CCR5 (8). The data presented here establish a dual role for CCR5 and MyD88 in *T. gondii*-induced IL-12 synthesis by DC and suggest that these elements signal through distinct pathways. The mechanism by which CCR5 and MyD88 interact to provide high level induction of IL-12 in the response of DC to *T. gondii* is currently under investigation.

Acknowledgments
We are grateful to Drs. Shizuo Akira and Douglas T. Golenbock for making the TLR2, TLR4, and MyD88−/− mice available to us, to Sara Hieny for her assistance in maintaining these mouse strains, and to Drs. Ricardo Gazzinelli and David Sibley for critically reading this manuscript.

References
21. Jankovic, D., M. C. Kullberg, S. Hieny, P. Caspar, C. M. Collazo, and A. Sher. 2002. In the absence of IL-12, CD4+ T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10−/− setting. Immunity 16:1.

