TNF-Induced Shedding of TNF Receptors in Human Polymorphonuclear Leukocytes: Role of the 55-kDa TNF Receptor and Involvement of a Membrane-Bound and Non-Matrix Metalloproteinase

Pietro Dri, Chiara Gasparini, Renzo Menegazzi, Rita Cramer, Lavinia Albéri, Gianni Presani, Spiridione Garbisa and Pierluigi Patriarca

J Immunol 2000; 165:2165-2172; doi: 10.4049/jimmunol.165.4.2165

http://www.jimmunol.org/content/165/4/2165

References

This article cites 58 articles, 35 of which you can access for free at:

http://www.jimmunol.org/content/165/4/2165.full#ref-list-1

Why *The JI*? Submit online.

- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
TNF-Induced Shedding of TNF Receptors in Human Polymorphonuclear Leukocytes: Role of the 55-kDa TNF Receptor and Involvement of a Membrane-Bound and Non-Matrix Metalloproteinase

Pietro Dri, Chiara Gasparini, Renzo Menegazzi, Rita Cramer, Lavinia Albéri, Gianni Presani, Spiridione Garbisa, and Pierluigi Patriarca

A down-modulation of both the 55-kDa (TNF-R55) and the 75-kDa (TNF-R75) TNF receptors is observed in neutrophils exposed to a variety of stimuli. Proteolytic cleavage of the extracellular region of both receptors (shedding) and, with TNF, internalization of TNF-R55 and shedding of TNF-R75 are the proposed mechanisms. We have characterized the TNF-induced shedding of TNF receptors in neutrophils and determined the nature of the involved proteinase. Neutrophils exposed to TNF release both TNF receptors. A release of TNF receptors comparable to that observed with TNF was induced with TNF-R55-specific reagents (mAbs and a mutant of TNF) but not with the corresponding TNF-R75-specific reagents. A hydroxamic acid compound (KB8301) almost completely inhibited shedding of TNF-R55 and to a lesser degree shedding of TNF-R75. KB8301 also inhibited FMLP-induced shedding to a similar extent. Shedding was also inhibited by 1,10-phenanthroline, but this effect was considered nonspecific as the compound, at variance with KB8301, almost completely inhibited TNF and FMLP-induced PMN activation. Diisopropylfluorophosphate partially inhibited shedding of TNF-R75, suggesting the contribution of a serine proteinase to the release of this receptor. Shedding activity was not affected by matrix metalloproteinases inhibitors nor was it released in the supernatants of FMLP-stimulated neutrophils. These results suggest that TNF induces release of its receptors, that such a release is mediated via TNF-R55, and that a membrane-bound and non-matrix metalloproteinase is involved in the process. The possibility that ADAM-17, which we show to be expressed in neutrophils, might be the involved proteinase is discussed. The Journal of Immunology, 2000, 165: 2165–2172.
their membrane-bound counterparts and limit TNF bioavailability (17) or to stabilize the ligand thus enhancing TNF signaling (18).

Because PMN rapidly and extensively release their TNF receptors after adherence or exposure to various agonists (11–13), it has been suggested that these cells might be a significant source of increased circulating TNF receptors observed in physiologic and pathologic conditions such as exercise (19), experimental endotoxemia (20), a clinical model of postoperative sepsis (21), and high-dose TNF in isolated limb perfusion (22). In light of these observations, the comprehension of the mechanisms that regulate shedding in PMN might provide the basis for experimental approaches aimed at modulating systemic responses to TNF.

We undertook this study to characterize the TNF-induced release of TNF receptors and to determine the nature of the proteinase(s) involved in the process. Our data show that TNF induces the release of both receptors, that such a release is mediated by TNF-R55, and that a metalloproteinase is involved in the process. The finding that the releasing activity is cell associated and unaffected by inhibitors of matrix metalloproteinases (MMP) suggests that it may belong to the ADAM (a disintegrin and metalloproteinase) family of membrane-bound metalloproteinases. On the basis of the available evidence, the possibility that TACE (TNF-α converting enzyme) might be the TNF receptors “sheddase” of stimulated PMN is discussed.

Materials and Methods

Reagents

BSA fraction V, FMLP, and streptavidin-R-PE conjugate were from Sigma (St. Louis, MO); Percoll was obtained from Pharmacia (Uppsala, Sweden). Immunosassays for human soluble TNF-R55 and TNF-R75 were performed using ELISA kits obtained from R&D Systems (Minneapolis, MN). All solutions were made in endotoxin-free water for clinical use.

Proteinases inhibitors

α1-Antitrypsin, chymostatin, 1,10-phenanthroline, phosphoramidon, leupeptin, thiopain, N-α-p-tosyl-1-lysine chloromethyl ketone (TLCK) were obtained from Sigma; disopropylfluorophosphate (DFP) was purchased from Acros Organics (Fair Lawn, NJ); [4-{N-(hydroxyamino)-2R-isorotyl-35-methylsucinyl]-3-(5,6,7,8-tetrahydro-1-naphthyl)alanine-N-methylamide (KB8301) (23), (4-hydroxy-2R-isorotyl-35-methylsucinyl]-1-phenyleglycine-N-methylamide (KB7785) (24) were gently provided by Dr. K. Yoshino (Nippon Organon, Osaka, Japan). TIMP-1 and TIMP-2 were prepared as methylamide (KB7785) (24) were kindly provided by Dr. K. Yoshino (Nippon Organon, Osaka, Japan). TIMP-1 and TIMP-2 might be the TNF receptors “sheddase” of stimulated PMN is discussed.

Abs and cytokines

mAb H938 (subclass IgG2a), a TNF-R55-specific and competing mAb (26), was a generous gift of Dr. P. Scheurich (University of Stuttgart, Stuttgart, Germany); mAb utr-1 (subclass IgG1), a TNF-R75-specific and competing mAb (27), was kindly provided by Dr. M. Brockhaus (Hoffmann-LaRoche, Basel, Switzerland); mAb huTACE-M22 (subclass IgG2a), a TNF-R55-specific and competing mAb (28), was kindly donated by Dr. R. Black (Immunex, Seattle, WA). mAb 2F7 and mAb 16E8 (29, 30), which recognize p125 TNF-R75, mAb M222 (3 mg/ml) for TACE, and mAbs 2F7 and 16E8 (5 μg/ml) for ADAM-12 were purchased from Immunex (Seattle, WA). mAb 119, a rabbit anti-human ADAM-12 disintegrin-like domain polyclonal Ab, were generously provided by Dr. F. Loechel (University of Copenhagen, Copenhagen, Denmark). Affinity isolated biotin-conjugated goat anti-mouse IgG and affinity isolated FITC-labeled goat anti-rat IgG, utilized as secondary Abs in FACS experiments, were obtained from Sigma and Tago (Burlingame CA), respectively. Pure recombinant human TNF, expressed in Escherichia coli, was obtained from Bissendorf Biochemicals (Hannover, Germany). P55TNF, the human TNF mutant that specifically recognizes TNF-R55, and P75TNF, the human TNF mutant that specifically recognizes TNF-R75 (31), were generously donated by Dr. H. Loetscher (Hoffmann-LaRoche).

Neutrophil isolation

Blood was drawn from healthy volunteers and anticoagulated with 4 mM EDTA. Neutrophils were isolated according to a single-step separation procedure (32) with slight modifications, as previously described in detail (33). The resulting cell population contained 96–98% neutrophils, 2–4% eosinophils, and 1–2% mononuclear cells. The cells were separated and suspended in 140 mM NaCl, 5 mM KCl, 5 mM HEPES, 5 mM glucose, and 0.2% BSA, pH 7.4 (HBS–BSA) at room temperature and in the absence of divalent cations to avoid neutrophil aggregation and activation. All experiments were carried out in HBS–BSA supplemented with 1 mM CaCl2 and 1 mM MgCl2 (HBS–BSA).

U937 cells

U937 cells, a human monoblast-like cell line, were cultured in RPMI 1640 medium supplemented with 10% FCS, 2 mM glutamate, and 50 μg/ml gentamicin at 37°C in an atmosphere of 95% air and 5% CO2.

Radioassay of TNF receptor expression

The radioiodination of TNF was performed as previously described (33). After incubation for 15 min in the presence or in the absence of TNF, neutrophils were cooled in ice and centrifuged for 5 min at 200 × g. All subsequent steps were conducted at 4°C to prevent cell activation and recycling and/or shedding of TNF receptors. The cells were then incubated with a glycine-HCl buffer (50 mM glycine and 125 mM NaCl (pH 3.0)) for 1.5 min to remove any TNF bound to the receptors. Preliminary experiments showed that this protocol removes all cell-associated TNF (125I-TNF) without affecting cell viability as shown by others (14, 34). To stop the acid treatment, the cells were diluted with HBS–BSA and centrifuged, and the pellets were resuspended in HBS–BSA. Cell suspension was divided in aliquots and used for receptors measurement. Expression of total TNF receptors was measured after addition of 2.5 ng/ml 125I-TNF (sp. act. 33.0 or 45.0 μCi/μg). For expression of TNF-R55, mAb utr-1 (10 μg/ml) was included in the incubation mixture, in addition to 125I-TNF, to block binding of TNF to TNF-R75. For expression of TNF-R75, mAb H938 (10 μg/ml) was included in the incubation mixture, in addition to 125I-TNF, to block binding of TNF to TNF-R55. Nonspecific binding was determined by addition of a 200-fold excess of cold TNF. After incubation for 2.5 h under agitation on a rocker platform, the unhbound TNF was removed by centrifugation (30 s at 13,000 × g, 4°C) and two washings with HBS–BSA. The pellet-containing bottom parts of the 1.5-ml microfuge tubes used in the experiments were then cut off and counted in a gamma counter.

Assay of TNF receptor releasing activity in PMN supernatants

PMN (107/ml) were incubated without and with FMLP (5 × 10−8 M) for 20 min at 37°C under constant agitation. After cooling on ice, the cells were centrifuged (13,000 × g for 3 min) and the supernatants collected. In parallel experiments, U937 cells were collected, centrifuged at 250 × g for 7 min, and suspended in HBS–BSA. Aliquots of supernatants correspond- ing to 7.5 × 106 cells, from resting and FMLP-treated PMN were then incubated with 105 U937 cells for 20 min at 37°C. After centrifugation, expression of TNF receptors on U937 cells was measured by flow cytometry.

Immunofluorescence flow cytometry

U937 cells or PMN after the different treatments were cooled at 4°C, divided in aliquots, and incubated for 45 min with the Abs of various specificities: mAb H938 (2 μg/ml) for TNF-R55, mAb utr-1 (2 μg/ml) for TNF-R75, mAb M222 (3 μg/ml) for TACE, and mAbs 2F7 and 16E8 (5 μg/ml) for ADAM-12. After two washes with ice-cold PBS, the cells were incubated for 30 min with biotinylated goat anti-mouse IgG and, after two additional washes, were incubated for another 20 min with a streptav- dinidin-R-PE conjugate. For mAbs 2F7 and 16E8, a FITC-conjugated goat anti-rat IgG secondary Ab was used. After washing, the cells were sus- pended in PBS containing 0.75% formaldehyde and analyzed by flow cytomtery (FACScan, Becton Dickinson, San Jose, CA).

Measurement of solubilized TNF receptors

A commercially available ELISA kit (R&D Systems) was used to measure the TNF receptors released in the supernatants obtained from PMN after the various treatments. In this assay an immobilized anti-TNF-R55 or anti-TNF-R75 mAb is used to capture the specific receptor, which is then detected by a peroxidase-conjugated polyclonal Ab. According to the manufacturer, this immunoassay, TNF does not show any significant cross-reactivity and exhibits only a low level of interference (10% decrease in the observed value using TNF at 5 ng/ml).

In all experiments the spontaneously solubilized receptors before the start of each experiment (t0) were subtracted from the final results.
Data analysis

ID_{50} values were determined by fitting the data to a sigmoidal curve using GraphPad Prism 3.0 for Windows 98 (GraphPad Software, San Diego, CA). Student’s t test on paired data was used to calculate statistical significance.

Results

TNF induces shedding of both TNF-R55 and TNF-R75

PMN were incubated in the absence and in the presence of TNF, and TNF receptor expression and shedding were measured. Fig. 1A shows that TNF causes down-modulation of the expression of its receptors, and that this is accompanied by their release in the incubation medium (Fig. 1B). In quantitative terms, the release of TNF-R75 is higher than that of TNF-R55. Also, resting release of TNF-R75 is more marked than the corresponding release of TNF-R55. The total amount of receptors measured in Triton X-100 extracts of PMN was 69.0 ± 3.4 and 101.9 ± 17.3 (pg/10⁶ PMN ± SD, $n = 3$) for TNF−R55 and TNF−R75, respectively. Thus, considering that the extra amount of shed receptors in the presence of TNF (TNF minus resting) is 16.1 ± 6.7 for TNF-R55 and 45.0 ± 16.4 for TNF-R75 (Fig. 1), it turns out that TNF causes the release of about 23% of TNF-R55 and 44% of TNF-R75. Fig. 2 shows that TNF-induced release of both receptors becomes apparent after a lag time of 5 min from the addition of the cytokine, increases rapidly afterward, and reaches its maximum after 15 min of incubation. In contrast, release from resting PMN linearly increases with time, at least up to the 60 min of incubation of our experiments.

TNF-induced shedding is mediated by TNF-R55

Initially, we tested the effect of receptor-specific reagents on receptor shedding. Fig. 3 shows that, after 15 min of incubation, p55TNF, a TNF-R55 specific TNF mutant, induces a release of both receptors, which is comparable to that induced by TNF. In contrast, p75TNF, a TNF-R75-specific mutant, does not exert any effect, even after 30 min of incubation (data not shown). The possibility that shedding could have occurred after TNF-R75 engagement (but the released receptors are not detectable because of an increased lability) was excluded by showing that receptor expression measured by immunofluorescence flow cytometry remained unchanged over a 30-min period (data not shown). Consistent with these findings are the results obtained with receptor-specific mAbs showing that mAb H398 (a TNF-R55 specific and competing mAb) induces release of TNF-R75 (TNF-R55 could not be measured due to interference by the mAb with the ELISA) while mAb utr-1 (a TNF-R75 specific and competing mAb) does not affect release of TNF-R55 (TNF-R75 could not be measured due to interference by the mAb with the ELISA). In additional experiments we observed that Fab fragments prepared from the TNF-R55-specific and competing mAb H398, which do not affect TNF receptors expression, completely prevented TNF-induced down-modulation of both receptors (data not shown).

Effect of proteinase inhibitors

A panel of proteinase inhibitors was initially screened for their effect on TNF-induced receptor solubilization. Table I shows that, among them, the metalloproteinase inhibitors 1.10-phenanthroline and the peptide-hydroxamates KB8301 and KB7785 strongly inhibited TNF-induced release of both TNF receptors. The inhibitory effect of KB8301 and KB7785 appears to be dependent on the hydroxamic acid-chelating moiety since KB8845, which lacks this moiety, is ineffective. Shedding of TNF-R55 was almost totally inhibited by KB8301 and 1.10-phenanthroline and less markedly by KB7785. Shedding of TNF-R75 was less markedly inhibited than shedding of TNF-R55 by all three compounds. The other inhibitors tested were ineffective, with the possible exception of DFP, which slightly but reproducibly inhibited TNF-R75 release only. Hydroxamic acid-based compounds and 1.10-phenanthroline have been extensively used to assess the involvement of metalloproteinas in shedding of various receptors, including selectins, CD43, and TNF receptors themselves (35–37). However, attention has not been paid to the possible effects of these inhibitors on the intracellular signaling pathways triggered by receptor engagement. We therefore tested the effect of KB8301 and 1.10-phenanthroline on TNF-induced PMN activation, as measured by the increase in O_2^- production, adherence, and expression of β₂ integrins. Table II shows that 1.10-phenanthroline virtually abolishes TNF-induced cell activation, whereas KB8301 has no effect. Similar results (i.e., strong inhibition with 1.10-phenanthroline or no effect with KB8301) were obtained after stimulation with FMLP (data not shown). A strong inhibitory effect on PMN activation was also observed using the nonchelating analogue 1.7-phenanthroline (data not shown). As these results point to a nonspecific effect of 1.10-phenanthroline, it was decided not to use this inhibitor in subsequent studies.

Fig. 4 shows the dose-response curve of the effect of KB8301, the most effective shedding inhibitor. From the data of these experiments a ID_{50} values of 0.22 and 0.84 μM were calculated for TNF-R55 and TNF-R75, respectively. The results of the figure also demonstrate that the less-pronounced inhibition of TNF-R75...
release by KB8301 cannot be overcome by increasing its concentration. Fig. 5 shows that KB8301 also inhibits shedding of TNF-R55 and TNF-R75 induced by FMLP, with a profile similar to that observed with TNF, i.e., almost complete inhibition of TNF-R55 release, and partial inhibition of TNF-R75 release.

Characteristics of the TNF receptor releasing activity

PMN contain a collagenase (MMP-8) and gelatinase B (MMP-9), two zinc-dependent endopeptidases of the MMP family that are strongly inhibited by peptide hydroxamates (38–41). We used two physiologic inhibitors of MMPs, i.e., TIMP-1 and TIMP-2 (42), to see if MMPs are involved in the shedding process. Table III shows that neither inhibitor affected TNF-induced receptor shedding. Since peptide hydroxamates are known to inhibit zinc metalloproteinases (41), we tested the effect of Zn²⁺ on inhibition of shedding by KB8301. Using 0.1 mM excess ZnCl₂, we were unable to counteract the inhibitory activity of KB8301 (data not shown).

We next sought to determine whether the shedding activity is released from PMN. To this end, we used U937 cells as a target, as they express substantial amounts of both TNF receptors and metalloproteinases and serineproteinases have been shown to be involved in their cleavage (36). Operatively, we measured receptor expression in these cells after incubation with supernatants obtained from PMN stimulated with FMLP, a potent secretagogue and inducer of TNF receptor shedding (11, 12). Table IV shows that a substantial down-regulation of both TNF-R55 and TNF-R75 occurs in U937 cells after TNF treatment, indicating that a sheddase similar to that functioning in PMN is operative in these cells, whereas the expression of both receptors is not altered following incubation with supernatants from either resting or FMLP-treated PMN. This suggests that the proteinase is membrane bound, although we cannot formally exclude that the inability to detect any shedding activity in PMN supernatants might reflect the instability of the hypothetically released sheddase, which might have completely lost its activity during the period of time (about 5 min for cooling on ice and centrifugation) needed to prepare the supernatants before assaying their activity, which seems really very unlikely.

Toward a more precise definition of the sheddase

The previous results indicate that a membrane-bound non-MMP is involved in TNF-induced shedding of TNF receptors. Members of the ADAM family of metalloproteinases, a class of membrane bound proteins that contain both disintegrin and metalloproteinase domains, recently have been shown to be involved in the shedding of the ectodomains of several membrane proteins (43, 44). We have assessed the expression in PMN of two of them known to possess proteinase activity, i.e., ADAM-17 (TACE) and ADAM-12 (45). Fig. 6 shows that PMN express ADAM-17 to an extent comparable to TNF receptors, whereas ADAM-12 was undetectable using either mAbs, as shown in the figure, or polyclonal Abs (data not shown).

Discussion

Regulation of the availability of cellular TNF receptors may be an important protective mechanism against excessive TNF activity. Proteolytic cleavage (shedding) is the major and best-documented mechanism of TNF receptor down-modulation that may on the one hand reduce cellular sensitivity to TNF; and on the other hand limit the bioavailability of TNF by providing soluble forms of the receptors that would compete for the cytokine with the cellular receptors. TNF orchestrates all stages of inflammation and plays a pivotal role in immune response to infection (46). However, excessive TNF production may turn TNF activities from beneficial to extremely injurious. In fact, acute release of large amounts of TNF in the circulation is followed by the characteristic manifestations of septic shock, i.e., decrease in capillary resistance, capillary leakage, falling in cardiac output, diffuse coagulation with necrosis of vital organs, and cardiopulmonary collapse (47–49). PMN are crucial targets of TNF activity, and if exposed to high TNF doses they may become key effectors of its toxic effects. The present study was undertaken to characterize the mechanisms involved in the solubilization of TNF receptors in PMN exposed to TNF. Our results clearly show that the down-modulation of receptor expression induced by TNF is associated with shedding of considerable amounts of both TNF-R55 and TNF-R75 (Fig. 1). This finding...
Table II. Effect of protease inhibitors on TNF-induced shedding of TNF receptors

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Target Proteinase</th>
<th>Soluble TNF-R55 (%) inhibition</th>
<th>Soluble TNF-R75 (%) inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB8301 (5 μM)</td>
<td>Metallo</td>
<td>91.5 ± 8.8 (16)</td>
<td>56.3 ± 20.4 (15)</td>
</tr>
<tr>
<td>KB7785 (5 μM)</td>
<td>Metallo</td>
<td>67.8</td>
<td>39.3</td>
</tr>
<tr>
<td>KB8845 (5 μM)</td>
<td>Control</td>
<td>−11.8</td>
<td>−5.1</td>
</tr>
<tr>
<td>1,10-Phenanthroline (1 mM)</td>
<td>Metallo</td>
<td>94.6 ± 10.1 (9)</td>
<td>69.9 ± 17.7 (8)</td>
</tr>
<tr>
<td>EDTA (5 mM)</td>
<td>Metallo</td>
<td>9.2 ± 16.9 (3)</td>
<td>3.5 ± 10.1 (3)</td>
</tr>
<tr>
<td>Thorphan (40 μM)</td>
<td>Metallo-endopeptidases</td>
<td>−12.5</td>
<td>−3.6</td>
</tr>
<tr>
<td>Phosphoramidon (100 μM)</td>
<td>Metallo-endopeptidases</td>
<td>−0.3</td>
<td>−7.3</td>
</tr>
<tr>
<td>DFP (1 mM)</td>
<td>Serine</td>
<td>7.7 ± 6.1 (5)</td>
<td>21.8 ± 6.3 (4)</td>
</tr>
<tr>
<td>Chymostatin (50 μM)</td>
<td>Serine, chymotrypsin-like</td>
<td>13.0</td>
<td>−7.2</td>
</tr>
<tr>
<td>TLCK (75 μM)</td>
<td>Serine, trypsin-like</td>
<td>7.1</td>
<td>−0.9</td>
</tr>
<tr>
<td>Leupeptin (15 μM)</td>
<td>Serine, trypsin-like; cysteine</td>
<td>6.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* PMN (5 × 10⁶/ml in HBS-BSA), after prewarming for 10 min at 37°C, were incubated with the inhibitors for 3 min and then 2.5 ng/ml TNF was added for an additional 15 min of incubation. After cooling, PMN were centrifuged, and soluble receptors were measured in the supernatants as described in Materials and Methods.

+ Data are expressed as percent inhibition of control ± SD. The number of experiments is indicated in parentheses. When not indicated, the data are from one experiment representative of two similar ones. Controls were (in pg/10⁶ PMN ± SD, n = 16) 18.2 ± 5.7 for TNF-R55 and 47.9 ± 11.5 for TNF-R75.

Table II. Effect of the metallocproteinase inhibitors KB8301 and 1,10-phenanthroline on TNF-induced PMN activation

<table>
<thead>
<tr>
<th>Additions</th>
<th>O₂⁻ Production (nmol/10⁶ PMN)</th>
<th>Adherence (%)</th>
<th>β₂ Integran Expression (MCF7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting 3.2 ± 4.2</td>
<td>12.3 ± 7.6</td>
<td>58.0 ± 9.9</td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>55.0 ± 10.8</td>
<td>78.5 ± 15.7</td>
<td>105.7 ± 16.2</td>
</tr>
<tr>
<td>TNF + KB8301</td>
<td>49.7 ± 9.6</td>
<td>58.3 ± 18.7</td>
<td>76.2 ± 13.2</td>
</tr>
<tr>
<td>TNF + KB8301 + 1,10-phenanthroline</td>
<td>3.2 ± 13.2</td>
<td>6.5 ± 3.2</td>
<td>57.4 ± 12.1</td>
</tr>
</tbody>
</table>

* PMN (1.5 × 10⁶/ml), after prewarming for 10 min at 37°C, were incubated with 5 μM KB8301 and 1 mM 1,10-phenanthroline for 3 min. Thereafter, O₂⁻ production, adherence, and β₂ integrin expression were measured exactly as described (63) after incubation for 30 min without (resting) and with 2.5 ng/ml TNF.

- Data are means ± SD of three to five experiments.

- Mean channel fluorescence.
also involved in receptor shedding induced by ligands other than TNF.

Two sets of data help to better classify the enzyme responsible for the stimulated release of TNF receptors in PMN. First, the results reported in Table III which show that TIMP-1 and TIMP-2 do not affect TNF-induced receptor shedding rule out the possibility that MMPs might be involved in the process, and second, the failure to detect in supernatants from FMLP-stimulated PMN any receptor releasing activity (Table IV) suggests that the proteinase is membrane bound. Thus, the involved sheddase is a non-matrix and membrane-anchored metalloproteinase. These characteristics are distinctive for ADAMs, a large group of metalloproteinases, included in family M12, subfamily B (reprolysins) of clan MB, according to a recent classification (55). A number of ADAMs have been identified and molecularly cloned so far in mammals included in family M12, subfamily B (reprolysins) of clan MB, according to a recent classification (55). A number of ADAMs have been identified and molecularly cloned so far in mammals.

Table III. Effect of MMP inhibitors TIMP-1 and TIMP-2 on TNF-induced shedding of TNF receptors

<table>
<thead>
<tr>
<th>Additions</th>
<th>TNF-R55 (pg/10^6 PMN)</th>
<th>TNF-R75 (pg/10^6 PMN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF</td>
<td>24.4 ± 3.6^a</td>
<td>50.4 ± 4.7</td>
</tr>
<tr>
<td>TNF + TIMP-1</td>
<td>19.8 ± 1.1</td>
<td>50.5 ± 3.7</td>
</tr>
<tr>
<td>TNF + TIMP-2</td>
<td>22.3 ± 2.2</td>
<td>51.8 ± 3.0</td>
</tr>
</tbody>
</table>

^a TNF (5 × 10^9/ml in HBS-BSA), after prewarming for 10 min at 37°C, were incubated for 2 min with KB8301 (5 μM) and for additional 15 min with FMLP (5 × 10^-8 M). After cooling and centrifugation, the soluble receptors were measured in the supernatants. The means of the results of three experiments are reported. Bars indicate SD. *, p < 0.02 vs FMLP-treated PMN; **, p < 0.05 vs FMLP-treated PMN.

FIGURE 5. Effect of KB8301 (KB) on FMLP-induced shedding of TNF receptors. PMN (5 × 10^6/ml in HBS-BSA), after preincubation for 10 min at 37°C, were incubated for 3 min with KB8301 (5 μM) and for additional 15 min with FMLP (5 × 10^-8 M). After cooling and centrifugation, the soluble receptors were measured in the supernatants. The means of the results of three experiments are reported. Bars indicate SD. *, p < 0.02 vs FMLP-treated PMN; **, p < 0.05 vs FMLP-treated PMN.

FIGURE 6. Expression of ADAM-12 (A) and ADAM-17 (TACE), TNF-R55, and TNF-R75 (B) on PMN. PMN (5 × 10^6/ml in HBS-BSA) were cooled on ice immediately after isolation and then divided into several aliquots. After incubation without (control) and with the appropriate mAb, Ab binding to PMN was measured as described in Materials and Methods. The fluorescence intensity in log scale is reported in the abscissa. The results of one experiment representative of three similar ones are reported.

Table IV. Effect of TNF and of supernatants from FMLP-treated PMN on the expression of TNF receptors in U937 cells

<table>
<thead>
<tr>
<th>Incubation Conditions</th>
<th>TNF-R55</th>
<th>TNF-R75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>50.1 ± 8.9^a</td>
<td>39.5 ± 9.4</td>
</tr>
<tr>
<td>+ TNF (10 ng/ml)</td>
<td>36.5 ± 4.7</td>
<td>26.7 ± 3.7</td>
</tr>
<tr>
<td>+ Supernatants from resting PMN</td>
<td>42.5 ± 4.9</td>
<td>43.0 ± 7.8</td>
</tr>
<tr>
<td>+ Supernatants from FMLP-treated PMN (t_b)</td>
<td>44.2 ± 8.4</td>
<td>43.0 ± 6.9</td>
</tr>
<tr>
<td>+ Supernatants from FMLP-treated PMN (t_d)</td>
<td>42.0 ± 7.9</td>
<td>44.9 ± 10.7</td>
</tr>
</tbody>
</table>

^a TNF (10^9/ml in HBS-BSA), after prewarming for 10 min at 37°C, were incubated without (resting PMN) or with FMLP (5 × 10^-8 M) for 20 min (t_d) at 37°C. FMLP (5 × 10^-8 M) was also added to an aliquot of PMN kept on ice (t_b). After cooling on ice and centrifugation (3 min at 13,000 × g), the supernatants were collected, brought to 37°C, and added to U937 cells (10^6 cells plus an aliquot of supernatants corresponding to 7.5 × 10^4 PMN equivalents, in a final volume of 350 μl). The control contained 10^6 U937 cells in 350 μl of HBS-BSA. After incubation for 20 min, the U937 cells were centrifuged and expression of TNF receptors was measured by immunofluorescence flow cytometry as described in Materials and Methods. The data are means ± SD of the mean channel fluorescence of three to four experiments.

Data are means ± SD of three experiments.
proteases is ADAM-17. Initially identified as the TACE (28, 60), it now appears to possess a more relaxed specificity and is probably involved in the release of a number of cytokines, growth factors and the corresponding receptors initially synthesized as membrane-anchored proteins. For example, it has been recently shown that cultured cells homozygous for a targeted mutation in ADAM-17 were markedly deficient not only in the release of TNF but also of TGF-α, L-selectin, and TNF-R75 (44). The presence of ADAM-17 in PMN has been demonstrated by Northern and Western blotting (28) with an expression comparable to that of TNF receptors, as shown in this paper (Fig. 6). Altogether, these observations can be taken as a plausible circumstantial evidence in favor of this metalloproteinase as the TNF receptor sheddase of stimulated PMN. If this conclusion is correct, then the recently published crystal structure of the catalytic domain of ADAM-17 cosecrystallized with a hydroxamic acid inhibitor (61) may provide useful hints to explain the two apparently incongruous results obtained with the metalloproteinase inhibitors, i.e., the inability of zinc to restore the activity inhibited by KB8301, and the lack of effect of EDTA (Table I). Compound 3, the hydroxamic acid-based metalloproteinase inhibitors. Dr. R. Black (Immunex Corp., Seattle, WA) for the anti-human TACE Abs, Dr. F. Loechel (Institute of Molecular Pathology, University of Vienna), and Dr. P Scheurich (Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany) for the anti-ADAM-12 Abs, Dr. H. Loetscher (Hoffmann-LaRoche) for the receptor-specific TNF mutants, Dr. R. Black (Immunex Corp., Seattle, WA) for the anti-human TACE mAb, and Dr. K. Yoshino (Nippon Organon, Osaka, Japan) for the gift of the hydroxamic acid-based metalloproteinase inhibitors.

Acknowledgments

We thank Dr. P Scheurich (Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany) and Dr. M. Brockhaus (Hoffmann-LaRoche, Basel, Switzerland) for supplying the anti TNF receptors Abs, Dr. F. Loechel (Institute of Molecular Pathology, University of Copenhagen, Copenhagen, Denmark) for the anti-ADAM-12 Abs, Dr. H. Loetscher (Hoffmann-LaRoche) for the receptor-specific TNF mutants, Dr. R. Black (Immunex Corp., Seattle, WA) for the anti-human TACE mAb, and Dr. K. Yoshino (Nippon Organon, Osaka, Japan) for the gift of the hydroxamic acid-based metalloproteinase inhibitors.

References