CD72 Negatively Regulates Signaling Through the Antigen Receptor of B Cells

Takahiro Adachi, Chisato Wakabayashi, Toshinori Nakayama, Hidetaka Yakura and Takeshi Tsubata

J Immunol 2000; 164:1223-1229; doi: 10.4049/jimmunol.164.3.1223
http://www.jimmunol.org/content/164/3/1223

References This article cites 50 articles, 21 of which you can access for free at:
http://www.jimmunol.org/content/164/3/1223.full#ref-list-1

Why The JI? Submit online.
• Rapid Reviews! 30 days* from submission to initial decision
• No Triage! Every submission reviewed by practicing scientists
• Fast Publication! 4 weeks from acceptance to publication

Subscription Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
CD72 Negatively Regulates Signaling Through the Antigen Receptor of B Cells

Takahiro Adachi,* Chisato Wakabayashi,* Toshinori Nakayama,† Hidetaka Yakura,‡ and Takeshi Tsubata2*†

The immunoreceptor tyrosine-based inhibition motif (ITIM) is found in various membrane molecules such as CD22 and the low-affinity Fc receptor for IgG in B cells and the killer cell-inhibitory receptor and Ly-49 in NK cells. Upon tyrosine phosphorylation at the ITIMs, these molecules recruit SH2 domain-containing phosphatases such as SH2-containing tyrosine phosphatase-1 and negatively regulate cell activity. The B cell surface molecule CD72 carries an ITIM and an ITIM-like sequence. We have previously shown that CD72 is phosphorylated and recruits SH2-containing tyrosine phosphatase-1 upon cross-linking of the Ag receptor of B cells (BCR). However, whether CD72 modulates BCR signaling has not yet been elucidated. In this paper we demonstrate that expression of CD72 down-modulates both extracellular signal-related kinase (ERK) activation and Ca2+ mobilization induced by BCR ligation in the mouse B lymphoma line K46mL, whereas BCR-mediated ERK activation was not reduced by the ITIM-mutated form of CD72. Moreover, coligation with CD72 with BCR reduces BCR-mediated ERK activation in spleen B cells of normal mice. These results indicate that CD72 negatively regulates BCR signaling. CD72 may play a regulatory role in B cell activation, probably by setting a threshold for BCR signaling.

The Journal of Immunology, 2000, 164: 1223–1229.

Ligation of the Ag receptor of B cells (BCR) activates the cytoplasmic kinase Syk and Src-family kinases such as Lyn (1). Those kinases then activate various signaling cascades including Ca2+ mobilization and mitogen-activated protein kinases (MAPK) such as extracellular signal-related kinase (ERK), resulting in cell proliferation, anergy, or apoptosis. BCR signaling is regulated either positively or negatively by various membrane molecules (2). For example, CD19, CD21, and CD45 are implicated to regulate BCR signaling positively. As for negative regulation, the low-affinity Fc receptor for IgG (FcγRII), CD22, and paired Ig-like receptor B have been shown to down-modulate B cell activation when coligated with BCR (3–8). Those inhibitory coreceptors carry the conserved immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic tail (9). ITIMs are also found in inhibitory receptors in other hematopoietic cell lineages such as NK cells (10). Upon tyrosine phosphorylation, ITIMs recruit and activate SH2-containing phosphatases such as SH2-containing tyrosine phosphatase-1 (SHP-1) and SH2-containing inositol 5-phosphatase (SHIP), which in turn down-regulate cell activity (9).

When B cells interact with Ags complexed with IgG, FcγRII is coligated with BCR. The coligation induces phosphorylation of FcγRII by the BCR-associated kinase Lyn (4, 11, 12). Phosphorylated FcγRII then down-modulates Ca2+ mobilization and cell proliferation by recruiting and activating SHIP (4, 5). However, BCR cross-linking alone fails to induce phosphorylation of FcγRII or its recruitment of SHIP. These findings indicate that FcγRII inducibly down-modulates BCR signaling upon coligation with BCR by Ag-IgG immune complexes. This conclusion is also supported by a finding on mice deficient in FcγRII (13). Those mice show enhanced B cell response to intact anti-Ig Abs interacting with both BCR and FcγRII, whereas the response to Fab fragments of anti-Ig Abs ligating BCR but not FcγRII is comparable between FcγRII-deficient and wild-type mice. Thus, FcγRII may play a role in negative feedback regulation, in which activation of B cells is down-modulated once the specific IgG is produced and forms an immune complex with Ags. In contrast, a fraction of CD22 is associated with BCR, and BCR ligation induces phosphorylation of CD22 (14–16), indicating that CD22 is constitutively associated with BCR both physically and functionally. This notion is also supported by the finding that B cell activation induced by BCR ligation alone is enhanced in mice deficient in CD22 (17–20). Upon phosphorylation, CD22 recruits SHIP, which in turn down-regulates cell activity (9).

Although CD22 constitutively associates with BCR, coligation of CD22 with BCR further reduces BCR signaling such as MAPK activation (21), probably because the coligation enhances association between CD22 and BCR. It is suggested that by down-modulating BCR signaling constitutively, CD22 sets a threshold for BCR ligation (22–24). Such a threshold may play a role in protecting B cells from BCR firing either spontaneously or by weak cross-reactive interaction with Ags. CD72 is a 45-kDa type II membrane protein containing a C-type lectin-like domain and is expressed on most B-lineage cells as a
homodimer (25–27). CD72 carries an ITIM and an ITIM-like sequence in the cytoplasmic tail. We (28) and Wu et al. (29) have previously demonstrated that CD72 is tyrosine-phosphorylated and recruits SHP-1 upon BCR ligation, as is the case for CD22. However, it has not yet been known whether CD72 negatively regulates BCR signaling. In this paper we demonstrate that expression of CD72 inhibits ERK activation and Ca$^{2+}$ mobilization by BCR cross-linking even in the absence of coligation of CD72 with BCR. This result strongly suggests that CD72 constitutes a down-modulates BCR signaling and sets a signaling threshold for B cell activation, as is the case for CD22.

Materials and Methods

Mice and cells

DBA/2 and BALB/c mice were purchased from Sankyo (Tokyo, Japan). Spleen B cells were purified as described previously (30). K46μm, a transfectant of the mouse B lymphoma line K46 expressing both the μ and λ L chains of IgG specific for hapten (4-hydroxy-3-nitrophenyl) acetyl (NP), was kindly provided by Drs. M. Reth and J. Wienands (31). The mouse B lymphoma line WEHI-231.5 was described previously (28). Cells (NP), was kindly provided by Drs. M. Reth and J. Wienands (31). The mouse B lymphoma line WEHI-231.5 was described previously (28). K46μm and its transfectants were stimulated with NP, coupled BSA (NP-BSA).

For coligation of BCR with CD72 on normal B cells, purified spleen B cells from DBA/2 mice were pretreated with 10 μg/ml of mAb 2.4G2 (a gift from Dr. N. Sorimachi) reacting to mouse Fcγ receptors. Flow cytometry showed that these cells expressed a marker CD72 reagent (see Table I). However, no significant differences were observed in the expression of CD72 with or without pretreatment with 2.4G2. In vitro kinase assay

Cells stained with the following regents: FITC-labeled goat anti-mouse μ-chain Ab (Southern Biotechnology Associates, Birmingham, AL), FITC-labeled goat anti-mouse μ-chain Ab (Southern Biotechnology Associates), biotin-labeled anti-mouse CD72 mAb 9-6-1 (32), biotin-labeled anti-mouse CD72 mAb CT72.2 (mouse IgM; Cedarlane), and FITC-labeled streptavidin (Dako, Glostrup, Denmark). Cells were analyzed by flow cytometry using a FACS Calibur (Becton Dickinson). Purified spleen B cells (1×10^6) were incubated in culture medium containing 1 μM Indo-1/AM (Molecular Probes) and 0.02% (v/v) pluronic F-127 at 37°C for 30 min. After washing three times, cells were incubated in Hanks’ solution containing either 10 μg/ml of anti-mouse CD72 mAb CT72.2 (mouse IgM; Cedarlane) or the same amount of anti-NP mAb B1-8 (mouse IgM) for 15 min on ice. After washing once, cells were suspended in Hanks’ solution and incubated at 37°C for 10 min, and the ratio of Indo-1 violet/blue of cells was measured continuously by flow cytometry using a FACS Calibur (Becton Dickinson) as described (34). Cells were added with F(ab')2, fragments of goat anti-mouse IgM Abs (ICN Pharmaceuticals) (final concentration, 20 μg/ml), and data was collected for a total of 200 s.

In vitro kinase assay

Cells were lysed in SDS-PAGE sample buffer and Western blot analysis was done as described previously (30) with anti-phospho-ERK Ab (New England Biolabs, Beverly, MA), rabbit anti-ERK2 Ab (Santa Cruz Biotechnology, Santa Cruz, CA), or rabbit anti-mouse CD72 Ab generated against the GST-CD72 fusion protein carrying the cytoplasmic tail of CD72 conserved among different CD72 allotypes (28).

Results

CD72 negatively regulates both ERK activation and Ca$^{2+}$ mobilization induced by BCR ligation in the K46μm B lymphoma cells

To investigate the signaling function of CD72, we assessed CD72 expression on the surface of B cell lines by flow cytometry. The B lymphoma line K46μm was not stained by Ab to CD72 (Fig. 1), although this line is derived from a BALB/c mouse carrying the CD72 α allotype. This indicated that K46μm does not express CD72 on the surface. Moreover, Western blot analysis using rabbit
FIGURE 2. CD72 expression reduces BCR-mediated phosphorylation of ERK in K46μM cells. Cells (5 x 10^5) of K46μM and its CD72 transfectants (K46μMCD72-4 and K46μMCD72-6) were treated with the indicated amounts of NP-BSA for 3 min (A) or with 10 μg/ml of NP-BSA for the indicated times (B) at 37°C. As negative controls, cells were treated with medium alone. Cells were subsequently lysed and subjected to Western blot analysis using anti-phospho-ERK Ab. Please note that the data on ERK1 and ERK2 were taken from the same membrane.

Ab reacting to the cytoplasmic region conserved among different CD72 allotypes showed that CD72 was undetectable in the total cell lysates of K46 (data not shown). Taken together, K46μM is likely to lack CD72 production. We then transfected K46μM with pMikCD72 containing the CD72 cDNA. For further analysis, we chose two transfected cells, K46μMCD72-4 and K46μMCD72-6 because they expressed a significant amount of CD72 on the surface and expressed similar amounts of surface IgM (μ and λ) to the parent K46μM cells (Fig. 1).

To ask whether CD72 regulates BCR signaling, we treated K46μM and its CD72 transfectants with various amounts of NP-BSA because surface IgM on K46μM is specific to NP. Phosphorylation of ERK was assessed by Western blotting of total cell lysates using anti-phospho-ERK Ab. When treated with Ag, phosphorylation of both ERK1 and ERK2 was enhanced in both K46μM and its CD72 transfectants (Fig. 2A). This result indicated that Ag stimulation induces phosphorylation of both ERK1 and ERK2 in K46μM and its CD72 transfectants. However, Ag-induced phosphorylation of ERK in both of the K46μM CD72 transfectants was weaker than that in the parent K46μM cells, regardless of the amount of Ag (Fig. 2A). Moreover, treatment with NP-BSA induced phosphorylation of ERK in K46μM CD72 transfectants with a similar time course to that in the parent K46μM cells (Fig. 2B). However, both of the CD72 transfectants showed reduced phosphorylation of ERK1 and ERK2 compared to that of the parent cells regardless of the duration of Ag stimulation.

FIGURE 3. In vitro kinase assay for ERK2. Cells (2 x 10^6) of K46μM and its CD72 transfectants (K46μMCD72-4 and K46μMCD72-6) were treated with medium alone or with 10 μg/ml of NP-BSA for the indicated times at 37°C. Cells were then lysed in lysis buffer, and cleared cell lysates were incubated with 1 μg of anti-ERK2 Ab together with 30 μl of protein G-Sepharose beads. After washing, half of the beads were incubated in kinase buffer containing 5 μg of MBP and 5 μCi of [γ-32P]ATP at room temperature for 20 min. The reaction was terminated by adding SDS-PAGE sample buffer, and proteins were separated by SDS-PAGE before autoradiography. Numbers under each lane indicate the cumulative fold increase in ERK2 activity over that found in unstimulated K46μM. The other half of each anti-ERK2 immunoprecipitates were analyzed by Western blotting using anti-ERK2 Ab to ensure the existence of ERK2 in the immunoprecipitates. The immunoprecipitate from the parent K46μM contained a smaller amount of ERK2 than the CD72 transfectants did, probably because the number of K46μM cells used for this experiment was less than that initially estimated. However, please note that the variation of the amount of ERK did not weaken the difference of ERK activity between K46μM and its CD72 transfectant as shown by the fact that the immunoprecipitate of K46μM contained a smaller amount of ERK2 but showed higher ERK2 kinase activity compared with the same indicators for CD72 transfectants. Representative data of three experiments are shown.

Taken together, expression of CD72 most probably down-modulates phosphorylation of ERK induced by BCR signaling. Because phosphorylation of ERK correlates with its activity, CD72 may negatively regulate activation of ERK. Indeed, in vitro kinase assay showed that the activity of ERK2 in Ag-stimulated K46μM CD72 transfectants was lower than that of Ag-stimulated K46μM (Fig. 3).

Next, we assessed whether CD72 regulates BCR-mediated Ca^{2+} mobilization. We treated K46μM and its CD72 transfectants with various amounts of NP-BSA and measured intracellular Ca^{2+} concentration by flow cytometry using Fluo-3. Treatment with NP-BSA increased the Ca^{2+} concentration of the parent K46μM cells and both of the CD72 transfectants (Fig. 4, A–C). However, the CD72 transfectants showed less increase in the intracellular Ca^{2+} concentration than the parent K46μM cells did. The reduced calcium response to BCR ligation was not due to clonal variation in calcium channel function, as evidenced by the fact that the CD72 transfectants showed a comparable response to a calcium ionophore A23187 (Fig. 4D). Thus, expression of CD72 appears to negatively regulate BCR-mediated Ca^{2+} mobilization in K46μM cells. Taken together, CD72 down-modulates both ERK activation and Ca^{2+} mobilization induced by BCR ligation, strongly suggesting that CD72 negatively regulates BCR signaling in K46μM cells.

To assess the role of the ITIM in CD72-mediated down-modulation of BCR signaling, we transfected K46μM cells with the expression plasmids for an ITIM-mutated form of CD72 (CD72Y/F), in which tyrosines at the ITIM and the ITIM-like sequence...
were replaced by phenylalanine. Although the CD72Y/F transfec-
tant expressed an even higher level of CD72 on the surface than
the K46mCLCD72-4 transfectant did, the transfectant showed sim-
ilar BCR-mediated phosphorylation of ERK1 and ERK2 to that of
the parent K46mCLcells (Fig. 5). Essentially the same results
were obtained in three independent transfectants (data not shown).
This indicated that CD72 requires its ITIM, ITIM-like sequence, or
both for negative regulation of BCR signaling.

Coligation of CD72 with BCR negatively regulates both ERK
activation and Ca2+ mobilization in normal spleen B cells

To investigate whether CD72 negatively regulates BCR signaling
in normal B cells, we isolated spleen B cells from 10-wk-old
BALB/c mice carrying the CD72b allotype and cross-linked BCR
together with CD72 to enhance the regulatory effect of CD72 on
BCR signaling. We treated B cells with either anti-CD72b mAb
CT72.2 (mouse IgM) or an isotype-matched control mAb B1-8 on
ice before addition of F(ab)\textsubscript{2} fragments of anti-mouse IgM Ab.
The treatment with the combination of CT72.2 and anti-IgM Ab
coligated CD72 with BCR as anti-IgM Ab reacted to both CT72.2 and
BCR (surface IgM) of B cells. Cells reacted without Abs were used as negative controls (gray histograms). Cells were
analyzed by flow cytometry using a FACSCalibur (Becton Dickinson).

FIGURE 4. CD72 reduces Ca2+ mobilization induced by BCR ligation.

Cells (1 × 105) of K46b, K46bCD72-4, and K46bCD72-6 were
loaded with 5 mM Fluo-3 in the presence of 0.02% pluronic F-127 at 37°C for 30 min. After washing, cells were suspended in HEPES buffer. Intracellular free Ca2+ concentration was measured by a FACSCalibur. Cells
were added with the indicated concentrations of NP-BSA (A–C) or with 5 nM A23187 (D) at 30 sec (indicated by arrows), and measurement of free Ca2+ concentration was continued for 360 s. Representative data of five experiments are shown.

FIGURE 5. Expression of an ITIM-mutated form of CD72 (CD72Y/F)
fails to reduce BCR-mediated phosphorylation of ERK in K46b cells.

A and B, CD72 expression on the cell surface. Cells of a K46b CD72Y/F transfectant (B) were reacted with biotinylated anti-mouse CD72a mAb 9.6.1 before staining with FITC-labeled streptavidin. As a control, K46bCD72-4 cells (A) were stained as parallel. Cells reacted
without Abs were used as negative controls (gray histograms). Cells were
analyzed by flow cytometry using a FACSCalibur (Becton Dickinson). C
and D, Phosphorylation of ERK. Cells (5 × 105) of K46b and its
CD72Y/F transfectant were treated with the indicated amounts of NP-BSA
for 3 min (C) or with 10 \mu g/ml of NP-BSA for the indicated times (D) at
37°C. As negative controls, cells were treated with medium alone. Cells
were subsequently lysed and subjected to Western blot analysis using anti-
phospho-ERK Ab. Please note that the data on ERK1 and ERK2 were
taken from the same membrane with different exposure times because the
intensity of the phospho-ERK1 band in each lane was much less than that
of the phospho-ERK2 band. Numbers under each lane indicate the relative
intensities of the phospho-ERK2 bands. The same blots were reprobed with
anti-ERK2 Ab to ensure equal loading. Representative data of three ex-
periments are shown.
cells were incubated with or without 20 μg/ml of anti-mouse κ-chain Ab at 37°C for 5 min. Cells were then lysed and subjected to Western blot analysis using anti-phospho-ERK Ab. The blots were then reprobed with anti-ERK2 Ab to ensure equal loading. Representative data of three experiments are shown. C, Coligation of CD72 with BCR reduces BCR-mediated ERK activation in normal spleen B cells. Purified spleen B cells from DBA/2 mice were preincubated with 10 μg/ml of anti-mouse CD72α mAb 9-6.1 or with an isotype-matched control mAb and incubated on ice for an additional 5 min. After washing, cells were incubated with or without 20 μg/ml of goat anti-mouse IgM Ab at 37°C for 5 min. Cells were then lysed and subjected to Western blot analysis using anti-phospho-ERK Ab. Numbers under each lane indicate the relative intensities of the phospho-ERK2 bands. The blots were then reprobed with anti-ERK2 Ab to ensure equal loading. Representative data of three experiments are shown. D, Coligation of CD72 with BCR reduces BCR-mediated Ca2+ mobilization in normal spleen B cells. Purified spleen B cells from DBA/2 mice were preincubated with 10 μg/ml of anti-mouse FcγRII mAb 2.4G2 on ice for 5 min. Cells were then added with 20 μg/ml of goat anti-mouse κ-chain Ab at 37°C for 5 min. Cells were then lysed and subjected to Western blot analysis using Indo-1. Coligation of CD72 with BCR showed a reduced Ca2+ flux compared to that with BCR ligation alone in spleen B cells (Fig. 6D). Taken together, these results indicate that coligation with CD72 negatively regulates BCR-induced ERK activation and Ca2+ concentration in normal spleen B cells.

Discussion

By taking advantage of the finding that the B lymphoma line K46μMα expresses no detectable CD72, we have established K46μMα transfectants expressing either wild-type CD72 or ITIM-mutated CD72 and demonstrated that expression of CD72 diminishes both ERK activation and Ca2+ mobilization induced by BCR ligation, whereas the ITIM-mutated form of CD72 does not reduce BCR-mediated ERK activation. Moreover, coligation of CD72 with BCR down-modulates both BCR-mediated ERK activation and Ca2+ mobilization in normal spleen B cells. These results strongly suggest that CD72 negatively regulates BCR signaling in B cell lines and normal mature B cells and that the ITIM and/or the ITIM-like sequence in CD72 are crucial for its negative regulatory effect on BCR signaling. Because induced coligation of CD72 with BCR is not required for negative regulation of BCR signaling by CD72 in K46μMα cells, CD72 may interact with BCR and down-modulate its signaling constitutively. This observation is in agreement with the previous finding that BCR ligation alone induces both phosphorylation of SHP-1 and recruitment of CD72 to CD72 (28, 29), indicating that CD72 functionally interacts with BCR even in the absence of coligation of CD72 with BCR. However, ERK2 were phosphorylated by either BCR ligation alone or coligation of BCR and CD72 (Fig. 6B). However, BCR ligation induced stronger ERK phosphorylation than coligation of CD72 with BCR did, indicating that BCR ligation-induced phosphorylation of ERK is down-modulated when CD72 is coligated with BCR. To confirm this observation, we coligated CD72 with BCR on spleen B cells from DBA/2 mice carrying CD72a using anti-CD72a and anti-mouse κ mAb. Because both anti-CD72a mAb and anti-κ mAb contain FcγRI, we blocked FcγRI by pretreating B cells with anti-FcγRI mAb 2.4G2. Phosphorylation of both ERK1 and ERK2 induced by coligation of BCR and CD72 was weaker than that induced by BCR ligation alone (Fig. 6C), indicating that coligation with CD72 reduced BCR ligation-mediated phosphorylation of ERK in DBA/2 spleen cells.

Finally, we stimulated spleen B cells from BALB/c mice by BCR ligation alone or by coligation of CD72 and BCR, and then we measured intracellular Ca2+ concentration by flow cytometry using Indo-1. Coligation of CD72 with BCR showed a reduced Ca2+ flux compared to that with BCR ligation alone in spleen B cells (Fig. 6D). Taken together, these results indicate that coligation with CD72 negatively regulates BCR-induced ERK activation and Ca2+ concentration in normal spleen B cells.
induced coligation of CD72 with BCR by using Abs to those molecules diminishes BCR signaling in spleen B cells (Fig. 6). Coligation of CD72 with BCR may enhance interaction of CD72 with BCR, resulting in further down-modulation of BCR signaling. This observation is in agreement with the finding on CD22 that coligation of CD22 with BCR further reduces BCR signaling (21), although several lines of evidence indicate that CD22 negatively regulates BCR signaling constitutively (22–24). Taken together, CD72 appears to constitutively down-modulate BCR signaling, but its negative regulatory effect is further enhanced by coligation of CD72 with BCR.

Treatment of B cells with anti-CD72 Abs has been shown to enhance activation and proliferation of normal mature B cells induced by BCR ligation (32, 35). However, this observation may not contradict the idea of a negative regulatory role of CD72 on BCR signaling. Indeed, BCR-mediated B cell activation is enhanced by treatment with Abs to CD22 (36, 37), whose inhibitory role on BCR signaling has already been established by lines of evidence including that on CD22-deficient mice (17–20). Anti-CD72 Abs may disrupt interaction between CD72 and BCR, resulting in enhancement of BCR signaling in the absence of the negative regulatory effect of CD72 on BCR signaling. Alternatively, CD72 transmits a stimulatory signal independent of BCR when CD72 is ligated by anti-CD72. This is consistent with the recent finding that CD72 ligation activates Src-family kinases Lyn and Blk in the absence of activation of Syk, which is essential for BCR signaling (38).

Both motheaten mice deficient in SHP-1 and Lyn-deficient mice show a marked increase in the number of plasma cells and development of autoimmunity disease associated with autoantibody production (39–43). Thus, SHP-1 and Lyn may prevent development of autoimmune disease, probably by inhibiting B cell hyperactivity. This inhibitory role of SHP-1 and Lyn appears to involve CD22. Indeed, CD22 is a substrate of Lyn and induces activation of SHP-1 (12, 44), suggesting that CD22 is a component of a signaling pathway including Lyn and SHP-1. This notion is also supported by the genetic evidence obtained using mice with heterozygous deficiency in SHP-1, Lyn, or CD22 (45). Although CD22-deficient mice show B cell hyperresponsiveness, the severity of the defects in CD22-deficient mice is much milder than that of SHP-1-deficient motheaten mice. Thus, other ITIM-containing molecules in B cells may play a role in maintaining the normal immune response together with CD22 by activating SHP-1. FcyRII may not be involved in this pathway, as shown by the fact that the inhibitory function of FcyRII is mostly ascribed to SHIP and not SHP-1 (5, 46). In contrast, CD72 negatively regulates BCR signaling in a manner similar to that of CD22. Indeed, both CD22 and CD72 constitutively associate with BCR (15, 16, 47), are substrates of Lyn (12, 28, 44), recruit SHP-1 upon BCR ligation, and negatively regulate BCR signaling such as Ca$^{2+}$ mobilization even in the absence of coligation with BCR (Figs. 2–4 and 6 and Refs. 17–21). Moreover, the cytoplasmic tails of both CD22 and CD72 carry ITIMs essential for recruitment of SHP-1 and negative regulation of BCR signaling (Fig. 5 and Refs. 6 and 28). Thus, CD72 may carry a function redundant with CD22 and, together with CD22, may maintain normal humoral immunity by activating an inhibitory signaling pathway involving Lyn and SHP-1. As defects in this pathway cause autoimmune disease with autoantibody production, defects in CD27 may be involved in development of autoimmune diseases.

CD72 may interact with its natural ligands through the extracellular region containing a C-type lectin-like domain. Interaction with the ligands probably modulates B cell activation induced by BCR ligation and may be involved in activation of B cells in certain humoral immune responses. CD5 expressed on T cells and B-1 cells has been shown to be a ligand for CD72 (48). However, this is controversial because Biancone et al. (49) and Bikah et al. (50) have recently demonstrated that CD5 fails to bind to CD72. Further elucidation of the role of CD72-mediated regulation of BCR signaling and its modification by CD72 ligands may be crucial for understanding the molecular mechanisms for normal and abnormal humoral immune responses.

Acknowledgments

We thank Drs. M. Reth and J. Wienands (Freiburg University) for K46mAb, Drs. N. Sorimachi (Tokyo Metropolitan Institute of Medical Science), K. Maruyama (Tokyo Medical and Dental University), and Y. Aiba for reagents, and Ms. Y. Shimokawa for technical assistance.

References

20. Nitschke, L., R. Carsetti, B. Ocker, G. Kohler, and M. C. Lamers. 1997. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7:133.

