Stem Cell Factor Is Localized in, Released from, and Cleaved by Human Mast Cells

Amato de Paulis, Giuseppina Minopoli, Eloisa Arbustini, Gennaro de Crescenzo, Fabrizio Dal Piaz, Piero Pucci, Tommaso Russo and Gianni Marone

J Immunol 1999; 163:2799-2808; ;
http://www.jimmunol.org/content/163/5/2799

References

This article cites 67 articles, 41 of which you can access for free at:
http://www.jimmunol.org/content/163/5/2799.full#ref-list-1

Why The JI? Submit online.

- Rapid Reviews! 30 days* from submission to initial decision
- No Triage! Every submission reviewed by practicing scientists
- Fast Publication! 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Stem Cell Factor Is Localized in, Released from, and Cleaved by Human Mast Cells

Amato de Paulis,* Giuseppina Minopoli,† Eloisa Arbustini,§ Gennaro de Crescenzo,* Fabrizio Dal Piaz,‡ Piero Pucci,‡ Tommaso Russo,§ and Gianni Marone*‡§

Stem cell factor (SCF) is the most important cytokine regulating human mast cell growth and functions. The immunogold technique showed SCF in the secretory granules of mast cells and in lung parenchymal mast cells (HLMC). Immunoreactive SCF (iSCF) was detected in cell lysates of HLMC, but not in basophils; iSCF and histamine were detected in supernatants of HLMC 3 min after challenge with anti-FcεRI or anti-IgE, and iSCF in supernatants rapidly declined after 30 min, whereas histamine remained unchanged for 120 min. HPLC and electrospray mass spectrometry (ES/MS) analysis of recombinant human SCF1–166 (18,656.9 ± 0.9 Da) treated with chymase showed a polypeptide of 17,977.1 ± 0.6 Da and a minor component of 697.4 ± 0.1 Da generated by specific cleavage at Phe159. SCF1–166 and SCF1–159 similarly activated HLMC, potentiated anti-IgE-induced activation of these cells, and stimulated HLMC chemotaxis. SCF1–166 had no effect on mast cells. Western blot analysis of supernatants of anti-IgE-activated HLMC incubated with recombinant human SCF1–166 showed that SCF1–166 was rapidly cleaved to SCF1–159 and SCF1–144. Experiments with supernatants of anti-IgE-activated HLMC incubated with SCF1–166 yielded similar results. In conclusion, SCF is stored in mast cell secretory granules and is immunologically released by human mast cells. SCF1–166 is rapidly and specifically cleaved to SCF1–159 by chymase, which retains its biological effect on mast cells. SCF is also cleaved by other proteases to several SCF species whose possible biological activities remain to be established.

The proto-oncogene c-kit encodes a transmembrane tyrosine kinase receptor that is a member of the receptor family for platelet-derived growth factor and M-CSF receptor (1, 2). The ligand for c-kit has been cloned and variously designated stem cell factor (SCF),3 mast cell growth factor, kit ligand, or steel factor, and exists in both membrane-bound and soluble forms (3–5). The gene encoding SCF resides at the steel locus (6). The SI gene encodes a primary translation product of 248 aa with a leader sequence and extracellular, transmembrane, and cytoplasmic domains (7, 8). The protein contains a proteolytic cleavage site encoded by the exon 6 sequence, and post-translational processing at this site leads to the secretion of a 165-aa, biologically active protein (9). An alternatively spliced cDNA form encodes a smaller 220-aa polypeptide that lacks exon 6 sequence, including the proteolytic cleavage sites, and hence results in a membrane-bound protein (7).

SCF is produced by fibroblasts (7, 10), stromal cells (11, 12), keratinocytes (13, 14), endothelial cells (12, 14–16), neuroblastoma cells (17), and tumor cell lines (18). SCF binds the c-kit receptor (c-kitR), activating its tyrosine kinase, leading to autophosphorylation of c-kitR on tyrosine and to association of c-kitR with substrates such as phosphatidylinositol 3-kinase (19). The c-kit product is selectively expressed on rodent (9, 20–25) and human mast cells (26–30), on melanocytes (19), and on a small progenitor cell fraction derived from bone marrow (27, 31), fetal liver (29), and cord blood mononuclear cells (30). SCF acts synergistically with other hemopoietic growth factors to stimulate the growth and differentiation of a variety of progenitor cells, including human mast cell progenitors (27, 29, 32).

Using immunogold staining of human heart tissue, we provided the first evidence that the secretory granules of human heart mast cells store SCF (33). Longley et al. demonstrated that human mast cell chymase, a chymotrypsin-like protease (34) also present in the secretory granules of human mast cells (33–37), cleaves SCF at the peptide bond between Phe158 and Met159 (38), which are encoded by exon 6 of the SCF gene (9). Recently, constitutive synthesis of SCF mRNA was demonstrated in human mast cells by RT-PCR (39).

This study was undertaken to investigate 1) whether SCF is present in mast cell granules from tissues other than the heart and in patients with diseases other than cardiomyopathies, 2) whether SCF can be immunologically released by isolated and purified mast cells, and 3) whether cleavage of SCF by chymase results in products active on human mast cells.

Materials and Methods

Reagents

The following were purchased: 60% HCl0 4 (Baker Chemical Co., Deventer, The Netherlands); human serum albumin (HSA), α-chymotrypsin, PIPES, hyaluronidase, chymopapain, collagenase, elastase type I, PMSF (Sigma, St. Louis, MO); HBSS, FCS (Life Technologies, Grand Island, NY); DNase I and pronase (Calbiochem, La Jolla, CA); RPMI 1640 with

Copyright © 1999 by The American Association of Immunologists

0022-1767/99/$02.00

Received for publication January 20, 1999. Accepted for publication June 28, 1999.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by grants from the Consiglio Nazionale delle Ricerche (Target Project Biotechnology Grants 97.01140.PF49 and 98.00085.PF31), Ministero della Sanità-Istituto Superiore Sanità (AIDS Project 1996 9403-70), MURST (Rome, Italy), and Associazione Italiana per la Ricerca sul Cancro.

2 Address correspondence and reprint requests to Dr. Gianni Marone, Division of Clinical Immunology and Allergy, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy. E-mail address: marone@unina.it

3 Abbreviations used in this paper: SCF, stem cell factor; anti-FcεRI, mouse monoclonal IgG anti-α-chain of high affinity receptor for IgE; anti-IgE, rabbit IgG anti-Fc fragment of human IgE; CMF-HBSS, Ca2+ - and Mg2+ -free HBSS; E/S, enzyme to substrate ratio; ES/MS, electrospray mass spectrometry; GPBS, gelatin-containing PBS; HLMC, human lung mast cells; HSA, human serum albumin; HSMC, human skin mast cells; iSCF, immunoreactive SCF; nSCF, recombinant human SCF; SI, steel locus.
25 mM HEPES buffer, Eagle’s MEM (Flow Laboratories, Irvine, Scotland); Dextran 70 and Percoll (Pharmacia, Uppsala, Sweden); and recombinant human c-kit receptor ligand (rhSCF; Amgen, Thousand Oaks, CA). The mononuclear anti-rhSCF (7H6) was donated by Dr. Keith Langley (Amgen, Thousand Oaks, CA). This Ab recognizes the region 79–97 of human SCF (40). The monoclonal (hkl-12) and rabbit polyclonal anti-rhSCF Abs were provided by Dr. Manfred Brockhaus (Hoffmann-La Roche, Basel, Switzerland). The monoclonal hkl-12 recognizes epitopes in the region 150–164 (14) (M. Brockaus, unpublished observation). The polyclonal sheep anti-human SCF was obtained from Genzyme (Cambridge, MA). Irrelevant mononuclear mouse anti-E-selectin was selected from R&D Systems (Minneapolis, MN). Rabbit and sheep polyclonal IgG from nonimmunized animals were obtained from Sigma. Protein A-gold complex was from Bio Clin (Biochemical Services, Cardiff, U.K.). Rabbit anti-human-Fc, Ab was a gift from Drs. Teruko and Kimishige Ishizaka (La Jolla Institute for Allergy and Immunology, La Jolla, CA). A mouse monoclonal IgG anti-a-chain of the high affinity receptor for IgE was donated by Dr. John Hakimi (Hoffmann-La Roche, Nutley, NJ). Human skin chymase, recombinant human chymase, and the rabbit polyclonal anti-chymase Ab were gifts from Dr. Norman M. Schechter (University of Pennsylvania, Philadelphia, PA).

Buffers

The PIPES buffer used in these experiments was made up of 25 mM PIPES (pH 7.37), 110 mM NaCl, and 5 mM KCl. The mixture is referred to as P. P2CG contains, in addition to P, 2 mM CaCl2, and 1 g/L dextrose (41); pH was titrated to 7.4 with sodium bicarbonate. PACGM contains in addition to P, 3% HSA, 1 mM CaCl2, 1 g/L dextrose, and 0.25 g/L MgCl2·6H2O (pH 7.4); PGMD contains 0.25 g/L MgCl2·6H2O, 10 mg/L DNase, and 1 g/L gelatin in addition to P, pH 7.37.

Patients with mastocytosis

The skin samples used in this study were obtained from four patients (27–45 yr old) with mastocytosis, undergoing skin biopsy for diagnostic purposes. Two (a 31-yr-old man and a 26-yr-old woman) presented with diffuse hyperpigmented and thickened skin that had remained unchanged for at least 10 yr. Hepatomegaly and systemic signs were present, although diffuse hyperpigmented and thickened skin that had remained unchanged for at least 10 yr. Hepatomegaly and systemic signs were present, although

Isolation and purification of human lung and skin mast cells

Lung tissue was obtained from patients undergoing thoracotomy and lung resection, mostly for lung cancer. These patients were anesthetized with the following drugs: droperidol plus fentanyl, thiopental, succinylcholine, and pancuronium (anesthesia). Macroscopically normal lung parenchyma was dissected free and consisted of high purity (>75% of the total cellular histamine) was subtracted from both numerator and denominator (48). All values are based on means of duplicate or triplicate determinations. Replicates differed in histamine content by <10%.

Chromatography assay

Mass cell chemotaxis was performed with a modified Boyden chamber technique as previously described (49). Briefly, 25 μl of PACGM buffer or various concentrations of the stimuli in the same buffer were placed in triplicate in the lower compartment of a 48-well microchemotaxis chamber (Neuroprobe, Cabin John, MD). The lower compartments were covered with a two-layer sandwich. The upper polycarbonate filters were discarded, while the lower nitrate cellulose filters were fixed in methanol, stained with Alcian blue, and then mounted on a microscope slide with Cytoseal (Stephan Scientific, Springfield, NJ). Mast cell chemotaxis was quantitated microscopically by counting the number of cells that had traversed the upper 8-μm pore size polycarbonate filter and were attached to the surface of the 5-μm pore size cellulose nitrate filter. In each experiment 10 fields/triplicate filter were measured at ×40 magnification. The results were compared with those for buffer controls.

SCF ELISA

The harvested supernatants and total SCF contents of HLMC were assessed using the SCF Quantikine kit (R&D Systems). The minimum detectable concentration was 10 pg/ml. All experiments were performed at least three times with duplicate samples.

Ultrastructural study

Samples for ultrastructural study were fixed in Karnowsky solution at 4°C for 2 h, rinsed in sodium cacodylate buffer (pH 7.3, pH 0.2 M), postfixed with 1% osmium tetroxide in 0.1 M cacodylate buffer for 1 h at 4°C, dehydrated in ethanol and propylene-oxide, and embedded in Epon-Araldite. Ultrathin sections were stained with uranyl acetate and Reynold’s lead citrate. The stained sections were examined with a Zeiss EM10 electron microscope (Zeiss, New York, NY) (50).

Electron immunocytochemistry

Ultrathin sections were deosmicated in aqueous saturated solution of 5% sodium metaperiodate for 10 min, rinsed in 1% OVA in 0.01 M Tris buffer/0.5 M NaCl, pH 7.6-Triton buffer, and washed with PBS/0.1% NaCl, pH 7.6-Triton-lysine buffer; the sections were then preincubated with 10% heat-inactivated normal goat serum and subsequently incubated overnight with the anti-SCF antiserum (7H6) diluted 1/100 in TBS/1% BSA/0.5% sodium azide buffer. The sections were washed three times in TBS/1% BSA/0.5% sodium azide buffer for 10 min each. Ultrathin sections were incubated with biotinylated goat anti-rabbit polyclonal antibody, 0.01 M sodium azide and incubated for 1 h with protein A/gold complex diluted 1/30 with TBS/1% BSA/0.5% sodium azide buffer (33). After a 2-h wash in TBS/1% BSA/0.5% sodium azide buffer, the grids were dried and stained for 15 min with aqueous uranyl acetate (5%) and for 10 min with Reynold’s lead citrate (36, 50). The stained sections were examined with a Zeiss EM10 electron microscope. In parallel experiments ultrathin sections were incubated with another anti-SCF mAb (hkl-12) or a rabbit or sheep polyclonal anti-SCF Ab. The following controls were run: omission of the Ab layer, replacement of specific Ab with isotype-matched irrelevant Ab at the same concentration,
and neutralization of specific Ab with rhSCF (3 μg/ml): equal amounts were mixed and allowed to stand for 1 h at 22°C until used for immunolabeling. The control procedures excluded any nonspecific reactivity.

Western blot analysis
Proteins were denatured in a buffer containing 50 mM Tris/HCl (pH 6.8), 2% SDS, 10% glycerol, 100 mM DTT, and 0.01% bromophenol blue; resolved by SDS-PAGE; and transferred to Immobilon-P membranes (Milipore, Bedford, MA) according to the manufacturer’s instructions. For the Western blot experiments, the filters were blocked in 5% dried nonfat milk in TBS solution and incubated with appropriate dilutions of the mAb anti-rhSCF 7H6 for 2 h at 22°C. The excess Ab was removed by sequentially washing the membranes in TBS-T, then a 1:5000 dilution of HRP-conjugated anti-mouse Ab (Amersham, Aylesbury, U.K.) was added to the filters for 1 h at 22°C. Filters were washed, and the signals were detected by chemiluminescence using the enhanced chemiluminescence system (Amersham) (51).

Characterization of rhSCF1–166
rhSCF1–166 was characterized by ES/MS to verify its amino acid sequence and the homogeneity of the protein preparation (52). An aliquot of the protein was analyzed by HPLC on a Vydac C18 (Phase Separation Group, Hesperia, CA) column, giving a single symmetric peak. The molecular mass of the HPLC fraction was directly determined by electrospray mass spectrometry (ES/MS), showing a molecular mass of 18,656.9 ± 0.9 Da, in agreement with the expected value (18,656.5 Da) (38).

Measurement of iSCF protein in human lung mast cells
Using ELISA, iSCF protein was measured in cell lysates of highly purified (>95%) preparations of HLMC and basophils purified (>98%) from peripheral blood. In a series of seven experiments the concentration of iSCF in lysates of HLMC was 50.2 ± 10.9 pg/10⁶ cells. The iSCF protein was undetectable in lysates of five preparations of purified basophils (Fig. 2).

Kinetics of iSCF and histamine release from immunologically activated HLMC
Mast cells isolated and purified (>96%) from lung parenchyma (HLMC) were challenged in vitro with an optimal concentration (1 μg/ml) of anti-IgE to evaluate the release of histamine and iSCF. Fig. 3 compares the kinetics of iSCF and histamine release from immunologically challenged HLMC. The release of histamine and iSCF induced by maximal stimulation with anti-IgE was complete within 1–15 min. The kinetics of histamine release reached a plateau after 1 min and remained unchanged for 60–120 min. In contrast, a peak of iSCF, detected after 3–15 min, progressively declined between 30–120 min. Similar results were obtained in two experiments in which purified HLMC (>96%) were challenged in vitro with anti-IgE (data not shown).

These data indicate that iSCF can be immunologically released by HLMC, but the immunoreactivity in the cell supernatants is rapidly lost, suggesting that the immunological activation of human mast cells also releases enzymatic activity capable of degrading iSCF.

Selective conversion of rhSCF1–166 by human chymase
Nonglycosylated rhSCF1–166 purified from transfected Escherichia coli cells as previously described (38) was submitted to limited proteolysis by pancreatic α-chymotrypsin or recombinant human chymase. To identify protease-sensitive sites within the rhSCF1–166 molecule, enzymatic hydrolysis was performed under strictly controlled conditions to ensure maximal stability of the protein conformation and to address protease action toward specific sites as previously reported (53). rhSCF1–166 was incubated with each protease using an appropriate enzyme to substrate ratio (E/S), and the process was monitored on a time-course basis by sampling the incubation mixture at intervals, followed by HPLC fractionation. Fragments released from the recombinant protein were identified by ES/MS, leading to the assignment of cleavage sites.
Fig. 4 shows the HPLC profile of the sample at 2 h of incubation of rhSCF 1–166 with \(\alpha \)-chymotrypsin using an E/S of 1/1000 (w/w). Peptides were analyzed by ES/MS and located within the rhSCF 1–166 sequence on the basis of molecular mass. The major component yielded a molecular mass of 17,977.1 ± 0.6 Da and was identified as fragment 1–159 (theoretical mass value, 17,976.6 Da), originating from a single proteolytic event at Phe 159. This was confirmed by identification of the smaller fraction containing the complementary peptide 160–166 (molecular mass, 697.4 ± 0.1 Da).

These two fragments were observed at very early stages of hydrolysis; they were present in the HPLC profile at 15 min of incubation, when intact rhSCF 1–166 was not yet detectable. At later stages, two other species were identified (Fig. 4A) whose mass values were 16,860.6 ± 1.3 and 16,420.1 ± 0.8 Da. The two peptides were identified as fragments 1–149 and 1–145 generated by chymotryptic cleavage at Lys 149 and Leu 145, respectively.

Hydrolysis of rhSCF 1–166 with chymase was performed under the same experimental conditions using an E/S of 1/500 (w/w). Fig. 4B shows the HPLC profile of the sample withdrawn after a 3-h incubation. Chymase displayed greater cleavage selectivity; only two fragments were generated by proteolysis. Mass spectral analysis of the major fraction 2 showed two components, whose mass values were 17,977.1 ± 0.6 and 18,656.9 ± 0.9 Da (Fig. 5).

The major component was identified as peptide 1–159, already observed in the \(\alpha \)-chymotrypsin experiment, and the minor species corresponded to the intact rhSCF 1–166 still present in the incubation mixture. Analysis of the minor fraction (Fig. 4B) showed the complementary peptide 160–166 (mass value, 697.4 ± 0.1 Da). No further cleavages were observed at later stages even when proteolysis was continued for 24 h (data not shown), indicating that chymase very specifically cleaves rhSCF 1–166 at Phe 159.

Rapid conversion of SCF 1–166 to SCF 1–159 by human chymase

We next determined whether recombinant human chymase cleaves rhSCF 1–166 by Western blot, using the mAb 7H6. Cleavage of rhSCF 1–166 by chymase was extremely rapid and was essentially complete within 24 h (Fig. 6). The 3 h sample had a higher percentage of the cleaved molecule, in agreement with the results of the ES/MS experiment. At the end of the assay, a homogeneous immunoreactive band was present at about 18 kDa (lane 5), corresponding to SCF 1–159.

Biological effects of SCF 1–166 and SCF 1–159 on HLMC and HSMC

The results reported above indicated that chymase rapidly and specifically cleaves SCF 1–166 at a site encoded within exon 6 of the SCF gene, leading to the formation of SCF 1–159 and a C-terminal.
septapeptide (9, 38). To investigate the possible biological roles of these three peptides, we evaluated the effects of rhSCF1–166, SCF1–159, and the septapeptide on HLMC and HSMC. Fig. 7A shows the results of a series of eight experiments, in which SCF1–166 and SCF 1–159 induced the release of histamine from HLMC in a similar manner, whereas the small cleavage product, the C-terminal septapeptide, had no activating effect whatsoever. SCF1–166 and SCF1–159 also enhanced the release of histamine from HLMC induced by anti-IgE (Fig. 7B). The septapeptide had no such effect. Results were similar when rhSCF1–166, SCF1–159, and the septapeptide were examined on HSMC alone or in combination with anti-IgE (data not shown).

In a series of six experiments we evaluated the effects of SCF1–166, SCF1–159, and the septapeptide SCF160–166 on HLMC chemotaxis. Fig. 8 shows the results of a typical experiment in which SCF1–166 and SCF1–159 concentration-dependently induced the chemotaxis of HLMC. The C-terminal septapeptide had no effect.

Kinetics of the interaction between SCF1–166 and HLMC

In a first group of experiments purified (>97%) HLMC challenged with anti-IgE (1 μg/ml) for 10 min at 37°C were incubated with rhSCF1–166 for periods between 30 s and 30 min at 37°C. At different times, HLMC were centrifuged, and supernatants were analyzed by Western blot using the 7H6 mAb. After 30-min incubation at 37°C, three bands appeared, one corresponding to SCF1–166, a band of 15 kDa, and an intermediate band slightly lower than 18 kDa. HLMC incubated with buffer for 10 min at 37°C and then incubated with rhSCF1–166 for periods between 30 s and 30 min did not affect SCF1–166 (Fig. 9). These data indicate that rhSCF1–166 in the presence of activated HLMC is rapidly converted to at least two different forms, one of which has a molecular mass corresponding to that of SCF1–159. The second form was identified by HPLC and ES/MS analysis of the immunoprecipitate as another, shortened form of SCF cleaved at Thr144.
To identify the 15-kDa band, the HLMC supernatant sample withdrawn after 15 min of incubation was fractionated by HPLC, and the individual fraction was analyzed by ES/MS. Besides a small percentage of SCF1–159, mass spectral analysis showed a major component with a molecular mass of 16,309.0 ± 0.6 Da, which was identified as SCF1–144 originating from proteolytic cleavage at Thr144. Minor species corresponding to SCF158 and SCF154 were also detected. These results do not exclude the possibility that at least part of exogenous SCF1–166 is internalized by HLMC (55). To assess this, we conducted a similar experiment using supernatants of anti-IgE-stimulated HLMC (Fig. 10). Incubation of SCF1–166 with supernatants of anti-IgE-challenged HLMC induced rapid (~3 min) cleavage of SCF1–166 to a faster migrating form with a molecular mass of approximately 15 kDa. After 30 min of incubation at 37°C, the approximately 15-kDa band increased in intensity, and an approximately 18-kDa band appeared, corresponding by ES/MS analysis to SCF1–159. These results indicate that the interaction between SCF and products released by human mast cells leads to the formation of several SCF species, which suggests that several putative cleavage sites occur within SCF1–166. Supernatants of HLMC incubated with buffer for 10 min at 37°C and then incubated with rhSCF1–166 for periods between 30 s and 30 min did not affect SCF1–166.

To demonstrate cleavage specificity, we added PMSF (3 mM) to the supernatants of anti-IgE-stimulated HLMC before adding SCF1–166. Under these conditions, chymase activity is virtually completely inhibited (38). Supernatants of stimulated HLMC incubated with PMSF (3 mM) and then incubated with rhSCF1–166 for periods between 3 and 30 min did not induce a band of about 18 kDa corresponding to SCF1–159 (Fig. 11). As a negative control, we performed similar experiment with purified (>98%) basophils challenged with an optimal concentration of anti-IgE (0.3 μg/ml) or buffer for 20 min at 37°C. Basophils were centrifuged for various lengths of time, and supernatants were analyzed by Western blot using the 7H6 mAb. The results show that neither anti-IgE-activated nor nonactivated basophils affected rhSCF1–166 (Fig. 12).

Discussion

We demonstrate that SCF, the most important cytokine for human mast cell growth and function, is localized in, immunologically released, and cleaved by human mast cells. Mast cell chymase rapidly and specifically cleaves SCF1–166 to SCF1–159 and a C-terminal septapeptide. Although SCF1–166 and SCF1–159 activate mast cells similarly, other proteases released by these cells cleave SCF to additional cleavage products (SCF1–144 and others). Thus,
the interaction between SCF and mast cell products leads to the formation of several SCF species, illustrating the complexity of these biological interactions in vivo.

In an earlier study we reported the presence of SCF in the secretory granules of human heart mast cells from patients with idiopathic and ischemic cardiomyopathy, detected using the immunogold technique (33). Roche and his collaborators, using RT-PCR, have recently demonstrated that human mast cells constitutively express SCF mRNA (39). Our study extends the previous observations, showing that SCF can be found in several tissues (skin and lung) from different patients. The specificity of this observation was demonstrated by the fact that gold particles were seen throughout the secretory granules of skin and lung mast cells, but not in the perigranular cytoplasm. Similar results were obtained with two different mAb anti-SCF (7H6 and hkl-12) and two polyclonal (rabbit and sheep) Abs that recognize different epitopes of SCF (14, 40). Dilated cardiomyopathies (33) and systemic mastocytosis (13, 14, 42) are characterized by mast cell hyperplasia, respectively local or systemic. SCF was found in secretory granules of mast cells from patients with dilated cardiomyopathy (33) and mastocytosis and also in the secretory granules of HLMC.

This is the first study to demonstrate that iSCF is present in human mast cells and that it can be rapidly released by immunologically challenged HLMC, in parallel with the preformed mediator histamine. However, whereas histamine is stable in the supernatants of anti-IgE-activated HLMC, iSCF declines rapidly. This might be due to prompt internalization of SCF bound to its cognate receptor, c-kit (55) or to rapid hydrolysis by proteolytic enzymes. Longley et al. demonstrated that rhSCF 1–166 is rapidly cleaved to SCF 1–159 and a septapeptide by human mast cell chymase (38). We confirmed their findings by showing that chymase, unlike α-chymotrypsin, selectively and rapidly cleaves SCF 1–166 into two components. The major component identified by ES/MS yielded a molecular mass of 17,977.1 ± 0.6 Da and was identified as the fragment SCF 1–159 originating from a single proteolytic event at Phe 159. The smaller fraction contained the complementary peptide 160–166 (molecular mass, 697.4 ± 0.1 Da). Both polypeptides,

![Figure 7](http://www.jimmunol.org/)

FIGURE 7. A. Effects of increasing concentrations of rhSCF 1–166, SCF 1–159, and the complementary peptide 160–166 on histamine release from purified HLMC. Values are the mean ± SEM. Error bars are not shown when graphically too small. *, p < 0.01 compared with spontaneous release. B. Percent enhancement by increasing concentrations of rhSCF 1–166, SCF 1–159, and the complementary peptide 160–166 of anti-IgE-induced histamine release from purified HLMC. Values are the mean ± SEM. Error bars are not shown when graphically too small. *, p < 0.01 compared with anti-IgE-induced histamine release.

![Figure 8](http://www.jimmunol.org/)

FIGURE 8. Effects of increasing concentrations of SCF 1–166 and SCF 1–159 on HLMC chemotaxis. HLMC (50,000/well) in the assay buffer were allowed to migrate toward the indicated concentrations of SCF 1–166 and SCF 1–159 for 3 h at 37°C in a humidified incubator (5% CO2). Values are the mean ± SEM. *, p < 0.01 compared with control.

![Figure 9](http://www.jimmunol.org/)

FIGURE 9. Western blot analysis of cleavage products of SCF 1–166. Purified HLMC (2 × 10^6 mast cells) challenged with anti-IgE (1 µg/ml) or buffer (unstimulated) for 10 min at 37°C were incubated with rhSCF 1–166 (5 µg) at 37°C for different intervals (30 s to 30 min). HLMC were centrifuged (1000 × g, 2 min, 22°C), and supernatants were electrophoresed on a 15% SDS-PAGE gel and transferred to Immobilon-P membrane using a Transblot cell. mAb 7H6 anti-SCF was used for Western blot analysis.
the native molecule SCF\(^{1-166}\) and the cleavage product of chymase, SCF\(^{1-159}\), apparently had biological effect on HLMC and HSMC, because they induce their activation and chemotaxis. The septapeptide had no such effect.

The complexity of the in vivo interactions between proteases and SCF, localized in and released from secretory granules of human mast cells, can be easily envisioned, since they contain several proteases (56–58) in addition to chymase (34, 35). Tissue mast cells and circulating basophils, the only two cells known to express Fc\(\epsilon\)-receptor, are still technical difficulties in measuring cytokine release from mast cells. Several cytokines have been detected by immunocytochemical techniques (64–66) and in mRNA (39, 62, 63), but there are still technical difficulties in measuring cytokine release from isolated and purified human mast cells at the protein level (70).

Human mast cells contain not only chymase (34, 35) but several proteases, such as trypsin (35–37), carboxypeptidase (56, 58), and cathepsin G (57). The experiment with a\(\alpha\)-chymotrypsin and chymase indicated that although chymase very specifically cleaves rhSCF\(^{1-166}\) at Phe\(^{159}\), there are further cleavage sites within SCF\(^{1-166}\). This was suggested by the experiments in which rhSCF\(^{1-166}\) was incubated for different intervals with activated HLMC. After 30 min at 37°C, SCF\(^{1-166}\) was converted to at least two different forms, with molecular masses corresponding to those of SCF\(^{1-159}\) and SCF\(^{1-144}\), respectively.

To exclude the possibility that the disappearance of SCF\(^{1-166}\) is due to its internalization by HLMC (55), we incubated SCF\(^{1-166}\) with supernatants of anti-IgE-activated HLMC. SCF\(^{1-166}\) was again rapidly cleaved to at least two forms, one with a molecular mass compatible with that of SCF\(^{1-159}\). These results indicate that the immunological secretion of proteases from HLMC leads to the formation of several SCF species, suggesting there may be several cleavage sites within SCF\(^{1-166}\). As a control we found that anti-IgE-activated basophils, which contain extremely low concentrations of proteases (35), did not cleave rhSCF\(^{1-166}\).

These results indicate that besides the native form of SCF\(^{1-166}\), at least two others, SCF\(^{1-159}\) and SCF\(^{1-144}\), may be formed in vivo. Thus, chymase might exert specific enzymatic activity that selectively acts at Phe\(^{159}\). Other as yet unknown protease(s), released from mast cells and not inhibited by PMSF may cleave SCF, leading to the formation of several SCF species. SCF\(^{1-166}\) and SCF\(^{1-159}\) are equally active on human mast cells. The biological activities of the third form of SCF\(^{1-144}\) generated by incubation of SCF\(^{1-166}\) with HLMC or their supernatants remain to be determined. Whatever the findings, it appears that SCF, chymase, and other proteolytic enzymes present in human mast cells participate in a complex biochemical system similar to the angiotensin I/angiotensin-converting enzyme/angiotensin II/angiotensin III system. Interestingly, chymase in human skin (34, 35) and heart mast cells (36) exerts angiotensin-converting enzyme activity, cleaving angiotensin I to angiotensin II (69–71).

A novel finding of this study is that mast cell proteases can degrade mast cell-derived cytokine. Previous studies have provided contrasting results on the production of cytokines by human mast cells. Several cytokines have been detected by immunocytochemical techniques (64–66) and in mRNA (39, 62, 63), but there are still technical difficulties in measuring cytokine release from isolated and purified human mast cells at the protein level (70).
example, constitutive synthesis of SCF mRNA was demonstrated in human lung and skin mast cells by RT-PCR, but iscF was undetectable in supernatants of anti-IgE-Activated HLMC (39). Our results showing that chymase and probably other mast cell-associated proteases can rapidly and efficiently cleave SCF explain the latter findings. Thus, the immunological activation of human mast cells could lead to the concomitant release of cytokines and cytokine-digesting proteases. Although the in vivo significance of the low amounts of SCF immunologically released from human mast cells remains to be established, it is not inconceivable that they exert local autocrine and paracrine functions. In fact, our results also highlight the complexity of the autocrine loops and negative feedbacks involving human mast cells. These cells not only synthesize (39), contain, and release the autocrine factor SCF acting on c-kit receptor, but also elaborate several proteases that in vivo might modulate the biological effects of cytokines.

We have not yet identified the enzymes, other than chymase and α-chymotrypsin, that lead to the formation of several species of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–144, generated by incubation of SCF. Moreover, although we have preliminarily identified a third molecular form of SCF as SCF1–14