Key Points
Peroxisomes are critical for homeostasis and Ab responses in B1/MZ B cells.
Peroxisomes are dispensable for development and responses in T and B2 cells.
Abstract
Antioxidant systems maintain cellular redox (oxidation-reduction) homeostasis. In contrast with other key redox pathways, such as the thioredoxin system, glutathione, and NF-E2-related factor 2 (Nrf2), little is known about the function of the redox-sensitive organelle “peroxisome” in immune cells. In this study, we show that the absence of peroxisomes in conditional Pex5-deficient mice strikingly results in impaired homeostatic maintenance of innate-like B cells, namely, B1 and marginal zone B cells, which translates into a defective Ab response to Streptococcus pneumoniae. Surprisingly, however, follicular B2 cell development, homeostatic maintenance, germinal center reactions, Ab production, class switching, and B cell memory formation were unaffected in Pex5-deficient animals. Similarly, T cell development and responses to viral infections also remained unaltered in the absence of Pex5. Thus, this study highlights the differential requirement of peroxisomes in distinct lymphocyte subtypes and may provide a rationale for specifically targeting peroxisomal metabolism in innate-like B cells in certain forms of B cell malignancies involving B1 cells.
Footnotes
This work was supported by research grants from ETH Zurich Foundation (ETH-23-16-2) and Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF) (310030B_182829).
The online version of this article contains supplemental material.
- Received June 1, 2021.
- Accepted December 2, 2021.
- Copyright © 2022 by The American Association of Immunologists, Inc.
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.