Key Points
Term pregnancy dNK generate distinct cytolytic responses to K562, PMA/I, and HCMV.
Unlike first trimester dNK, term pregnancy dNK are not skewed to recognize HLA-C.
Protein and mRNA profiles suggest term pregnancy dNK are a distinct type of NK cell.
Abstract
Decidual NK cells (dNK) are the main lymphocyte population in early pregnancy decidual mucosa. Although dNK decrease during pregnancy, they remain present in decidual tissues at term. First trimester dNK facilitate trophoblast invasion, provide protection against infections, and were shown to have many differences in their expression of NKRs, cytokines, and cytolytic capacity compared with peripheral blood NK cells (pNK). However, only limited data are available on the phenotype and function of term pregnancy dNK. In this study, dNK from human term pregnancy decidua basalis and decidua parietalis tissues were compared with pNK and first trimester dNK. Profound differences were found, including: 1) term pregnancy dNK have an increased degranulation response to K562 and PMA/ionomycin but lower capacity to respond to human CMV–infected cells; 2) term pregnancy dNK are not skewed toward recognition of HLA-C, as was previously shown for first trimester dNK; and 3) protein and gene expression profiles identified multiple differences between pNK, first trimester, and term pregnancy dNK, suggesting term pregnancy dNK are a distinct type of NK cells. Understanding the role of dNK throughout pregnancy is of high clinical relevance for studies aiming to prevent placental inflammatory disorders as well as maternal-to-fetal transmission of pathogens.
Footnotes
This work was supported by National Institute of Allergy and Infectious Diseases, National Institutes of Health Grant R01-AI145862 and Strominger laboratory departmental grants.
The online version of this article contains supplemental material.
- Received December 3, 2019.
- Accepted April 14, 2020.
- Copyright © 2020 by The American Association of Immunologists, Inc.
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.