Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint

Brian D. Weitzner and Jeffrey J. Gray
J Immunol November 21, 2016, 1601137; DOI: https://doi.org/10.4049/jimmunol.1601137
Brian D. Weitzner
Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Brian D. Weitzner
Jeffrey J. Gray
Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeffrey J. Gray
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF + SI
  • PDF
Loading

Abstract

Ab structure prediction has made great strides, but accurately modeling CDR H3 loops remains elusive. Unlike the other five CDR loops, CDR H3 does not adopt canonical conformations and must be modeled de novo. During Antibody Modeling Assessment II, we found that biasing simulations toward kinked conformations enables generating low–root mean square deviation models (Weitzner et al. 2014. Proteins 82: 1611–1623), and since then, we have presented new geometric parameters defining the kink conformation (Weitzner et al. 2015. Structure 23: 302–311). In this study, we use these parameters to develop a new biasing constraint. When applied to a benchmark set of high-quality CDR H3 loops, the average minimum root mean square deviation sampled is 0.93 Å, compared with 1.34 Å without the constraint. We then test the performance of the constrained de novo method for homology modeling and rigid-body docking and present the results for 1) the Antibody Modeling Assessment II targets, 2) the 2009 RosettaAntibody benchmark set, and 3) the high-quality set.

Footnotes

  • This work was supported by National Institutes of Health Grant R01 GM078221 (to J.J.G.). Andrew P. Leaver-Fay is supported by National Institutes of Health Grant R01 GM73151, the Extreme Science and Engineering Discovery Environment is supported by National Science Foundation Grant ACI-1053575, and the Maryland Advanced Research Computing Center is supported by the State of Maryland.

  • The online version of this article contains supplemental material.

  • Received July 11, 2016.
  • Accepted September 12, 2016.
  • Copyright © 2016 by The American Association of Immunologists, Inc.
PreviousNext
Back to top

In this issue

The Journal of Immunology: 208 (11)
The Journal of Immunology
Vol. 208, Issue 11
1 Jun 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint
Brian D. Weitzner, Jeffrey J. Gray
The Journal of Immunology November 21, 2016, 1601137; DOI: 10.4049/jimmunol.1601137

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint
Brian D. Weitzner, Jeffrey J. Gray
The Journal of Immunology November 21, 2016, 1601137; DOI: 10.4049/jimmunol.1601137
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A Novel Method for Total IgE Purification from Human Serum
  • A Single-Domain TCR-like Antibody Selective for the Qa-1b/Qdm Peptide Complex Enhances Tumoricidal Activity of NK Cells via Blocking the NKG2A Immune Checkpoint
  • Development and Validation of an Enzyme Immunoassay for Detection and Quantification of SARS-CoV-2 Salivary IgA and IgG
Show more NOVEL IMMUNOLOGICAL METHODS

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606