Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Studies on the Mechanism of Sulfonamide Bacteriostasis, Inhibition and Resistance

Experiments with E. Coli in a Synthetic Medium

J Immunol November 1, 1941, 42 (3) 313-329;
  • Article
  • Info & Metrics
  • PDF
Loading

Summary

A strain of E. coli was studied which, in a simple synthetic medium, required nicotinic acid or nicotinamide for growth from small inocula. Growth was also improved by increasing the concentration of carbon dioxide in the atmosphere.

Sulfathiazole, sulfadiazine, sulfapyridine, sulfaguanidine and sulfanilamide were bacteriostatic in relatively small concentrations, as compared with their activity against this organism in complex media.

Nicotinamide, nicotinic acid and coenzyme I did not inhibit the action of these sulfonamide drugs.

P-aminobenzoic acid is a strong inhibitor of sulfonamide action, methionine a weak inhibitor. Differences in the effect of methionine on various sulfonamide drugs may be quantitative rather than qualitative.

The development of resistance to sulfonamide action has been produced with E. coli in a simple medium. P-aminobenzoic acid prevents the development of sulfonamide resistance, while methionine delays but does not prevent the development of resistance.

  • Received August 1, 1941.
  • Copyright © 1941 by The American Association of Immunologists, Inc.

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 42, Issue 3
1 Nov 1941
  • Table of Contents
  • Table of Contents (PDF)
  • Advertising (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Studies on the Mechanism of Sulfonamide Bacteriostasis, Inhibition and Resistance
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Studies on the Mechanism of Sulfonamide Bacteriostasis, Inhibition and Resistance
The Journal of Immunology November 1, 1941, 42 (3) 313-329;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Studies on the Mechanism of Sulfonamide Bacteriostasis, Inhibition and Resistance
The Journal of Immunology November 1, 1941, 42 (3) 313-329;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606