Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence

Alexandra J. Murray, Kyungyoon J. Kwon, Donna L. Farber and Robert F. Siliciano
J Immunol July 15, 2016, 197 (2) 407-417; DOI: https://doi.org/10.4049/jimmunol.1600343
Alexandra J. Murray
*Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexandra J. Murray
Kyungyoon J. Kwon
*Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donna L. Farber
†Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032;
‡Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032;
§Department of Surgery, Columbia University Medical Center, New York, NY 10032; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert F. Siliciano
*Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
¶Howard Hughes Medical Institute, Baltimore MD 21250
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4+ T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.

Introduction

In 2014, ∼37 million people were living with HIV-1 infection (http://www.unaids.org). Optimal patient outcomes are achieved by initiating combination antiretroviral therapy (ART) as soon as infection is diagnosed, regardless of the CD4+ T cell count (1–3). ART reduces plasma virus levels to below the clinical detection limit (20–50 copies of HIV-1 RNA/ml) and halts disease progression (4–6). Recommended initial regimens consist of two nucleoside analog reverse transcriptase inhibitors and a third drug, either an integrase inhibitor or the protease inhibitor darunavir (3). Although ART effectively suppresses viremia, it is not curative, and viremia rebounds upon ART cessation (7, 8). Therefore, lifelong treatment is required. Providing lifelong treatment for all infected individuals poses a major economic and logistical challenge. Only 15 million people currently receive ART. The tolerability of ART regimens has improved dramatically, but long-term drug toxicity is also a concern. Other problems include the emergence of resistance with suboptimal treatment and the stigma associated with the infection. For these reasons, there is great current interest in a cure (9, 10).

The principal barrier to cure is a stable reservoir of latent HIV-1 in resting CD4+ T cells (11, 12). The reservoir persists even in patients on long-term ART who have no detectable viremia (13–18). The cells comprising this reservoir have a memory phenotype (12, 19–23). Direct measurements of the latent reservoir in patients on ART show a very slow decay rate (t1/2 of 3.7 y) (16, 17). At this rate, eradication of a reservoir of 106 cells would require 73 y, making cure unlikely even with lifelong ART. Thus, research toward a cure focuses on eliminating this reservoir. Recent reviews have discussed molecular mechanisms of HIV-1 latency (24–27) and approaches for eliminating the reservoir (10, 28–30). In this review, we consider explanations for its remarkable stability.

Why does HIV-1 establish latent infection?

Viral latency is a reversibly nonproductive state of infection of individual cells (31). Latently infected cells contain a stable form of the viral genome, either as a circular plasmid in the case of herpesviruses or as a linear provirus stably integrated into host cell DNA in the case of HIV-1. During latency, there is highly restricted expression of viral genes (31). For some herpesviruses, latency evolved as an essential mechanism of immune evasion and viral persistence (31, 32). For HIV-1, latency is not necessary for persistence, as active viral replication occurs throughout the course of infection in untreated patients (33). Escape from immune responses is through rapid evolution of variants not recognized by CTL or neutralizing Abs (34–41). Nevertheless, a latent reservoir is established rapidly in all HIV-1–infected individuals (42). Latently infected cells can be detected in the rare individuals who spontaneously control HIV-1 infection without ART (43). Early ART restricts the size of the reservoir (22, 44) but does not block its establishment (42). In rhesus macaques infected with SIV, which also establishes a latent reservoir in resting CD4+ T cells (45, 46), initiation of ART on day 3 postinfection prevents detectable viremia but not the establishment of a latent reservoir (47). Thus, it is difficult to prevent the establishment of the latent reservoir.

A recent theory suggests that HIV-1 evolved a mechanism for rapid establishment of latent infection to facilitate transmission across mucosal barriers (48, 49). Latency is proposed to serve as a “bet-hedging strategy” that allows some infected cells to survive long enough to transit the mucosa. However, as discussed below, infected cells can remain in a latent state for years, and a long interval between mucosal exposure and viremia has never been documented.

Latency is most simply explained as a consequence of viral tropism for activated CD4+ T cells that can transition to a resting memory state that is nonpermissive for replication (Fig. 1). HIV-1 has a strong propensity to infect activated CD4+ T cells (50, 51). CCR5, a critical coreceptor for entry of the commonly transmitted forms of HIV-1 (52-57), is upregulated on CD4+ T cell activation (58). Following entry, reverse transcription of the viral RNA genome into DNA and integration of the resulting provirus into host cell DNA occur within hours (59). Transcription of the integrated provirus then begins because active nuclear forms of key host factors needed for the initiation and elongation of viral transcription, including NF-κB, NFAT, and pTEFb, are present in activated cells (60–67). In contrast, resting CD4+ T cells mostly lack CCR5 expression (58), and other factors interfere with HIV-1 replication even when the virus has successfully entered. The cellular protein SAMHD1, a deoxynucleoside triphosphate triphosphohydrolase, depletes dNTP levels, thus impeding reverse transcription (68–70). It is expressed at high levels in myeloid cells and resting CD4+ T cells (52–55). Interestingly, SIV and HIV-2 encode a protein, Vpx, that promotes SAMHD1 degradation (68, 71). However, HIV-1 lacks Vpx, and thus reverse transcription in resting CD4+ T cells is inefficient, taking as long as 3 d (72–74). The static nature of the actin cytoskeleton in resting cells inhibits delivery of the reverse-transcribed viral genome to the nucleus (75). These delays facilitate recognition of DNA intermediates generated during reverse transcription by a host innate DNA sensor, IFI16, leading to caspase-1 activation and a proinflammatory form of cell death known as pyroptosis (76–78). Additional barriers to replication in resting CD4+ T cells include the lack of active forms of NF-κB, NFAT, and pTEFb needed for transcription of the provirus (60–63, 65, 66).

FIGURE 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 1.

Model for the establishment of latent HIV-1 infection in resting memory CD4+ T cells. The normal process of memory cell generation (boxed) involves the exposure of resting CD4+ T cells to Ag, which leads to blast transformation, proliferation, and differentiation into effector cells. Many effector cells die during the contraction phase of the immune response, but a fraction survive and gradually return to a quiescent state as long-lived resting memory cells. Most resting CD4+ T cells lack expression of CCR5, a critical coreceptor for HIV-1 entry. Activation of resting cells by Ag upregulates CCR5 expression and reverses other blocks to HIV-1 replication in resting CD4+ T cells, allowing productive infection of these cells. Most productively infected CD4+ T lymphoblasts die rapidly from activation-induced cell death (AICD), viral cytopathic effects (CPE), or lysis by CTL. As activated cells transition back to a resting state, active forms of key host transcription factors needed for HIV-1 gene expression are sequestered. Infection at this stage may lead to latent infection rather than cell death. Other models posit direct infection of resting cells. Please see text for references.

Although activated CD4+ T cells are the principal target for HIV-1, they die quickly after infection. Classic studies of viral dynamics revealed a rapid decay in viremia when new infection events are blocked with ART (6, 79–81). This decay reflects the short half-life of plasma virions (t1/2 of minutes) and of the infected cells that produce most of the plasma virus (t1/2 of ∼1 d). Activated T cells are prone to die in the contraction phase of immune responses due to activation-induced cell death (82). Additionally, productively infected cells may die of other cell death pathways triggered by viral proteins or by integration of the provirus into the host cell genome (83, 84). Infected CD4+ T lymphoblasts may also be lysed by CD8+ CTL (34, 85–87). Surprisingly CTL do not appear to shorten the t1/2 of productively infected cells (88, 89). Nevertheless, it appears that most productively infected CD4+ T lymphoblasts are short-lived.

Given that resting CD4+ T cells are resistant to infection and that activated CD4+ T cells die quickly after infection, how is the latent reservoir established? Some infected CD4+ T lymphoblasts may survive long enough to revert to a resting memory state that is nonpermissive for viral gene expression (11), particularly when they are infected within a narrow time window when still permissive for steps in the life cycle up through integration, but not for high-level gene expression (Fig. 1). Thus, establishment of latent infection is a rare event, consistent with the low frequency of latently infected cells in vivo (1/106) (13, 16–18). Latency may be further enforced by silencing epigenetic modifications of the integrated provirus (90–92). In this latent state, the virus persists essentially as genetic information. When Ag or cytokines subsequently activate the cell, the provirus is transcribed, viral proteins are produced, and virus particles are released. Given the long t1/2 of memory T cell responses and the fact that the latent proviruses in these cells are not detected by the immune system or targeted by ART, stable persistence of HIV-1 is not surprising. This simple model views latency in the context of the normal physiology of immunologic memory, thereby explaining all clinical observations regarding HIV-1 persistence without requiring the evolution of special viral mechanisms for latency.

Residual viremia, the latent reservoir, and viral rebound

Trace levels of free virus (∼1 copy/ml) are present in the plasma of most patients on ART (93–95). Sequence analysis of the residual viremia (RV) reveals that these viruses resemble viremia present earlier in infection, are sensitive to the patient’s current ART regimen, and generally do not show evidence of ongoing evolution (96–100). These features all suggest that RV originates from a stable reservoir (101). In situations where evolution has been detected, suboptimal ART may be the cause (102). Importantly, intensification of standard three-drug ART with additional antiretroviral drugs from a different class does not reduce RV (103–105), indicating that it originates from long-lived cells infected prior to ART. Latently infected resting CD4+ T cells are at least one source of RV (Fig. 2). The presence of RV suggests that multiple latently infected cells are activated every day. While patients remain on ART, the viruses released do not infect additional cells. However, when ART is interrupted, viral rebound occurs. Rebound is typically seen within 2 wk (7, 8), the time required for washout of antiretroviral drugs and growth of the recently released viruses to detectable levels. The rebound virus is archival in character, consistent with the conclusion that it originates from a stable latent reservoir (106). The limited variation in time to rebound, despite a 2 log variation in reservoir size, also suggests that multiple cells are activated per day (107). This conclusion is consistent with a recent analysis of viral rebound that detected multiple viral lineages emerging in multiple sites (lymph node, ileum, and rectum) (8).

FIGURE 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 2.

Dynamics of the latent reservoir. ART largely blocks new infection of susceptible cells. In patients on long-term ART, the pool of latently infected cells is extremely stable (t1/2 of 3.7 y) so that memory cell turnover must be largely balanced by proliferation of previously infected cells. Latently infected resting memory CD4+ T cells occasionally encounter the relevant cognate Ag (or a cross-reacting Ag) and become activated. Activation reverses latency, allowing viral gene expression and virus production. In patients on ART, the released viruses do not successfully infect new cells, but may be detected at very low levels in the plasma where they constitute the RV. Most productively infected cells die quickly from activation-induced cell death (AICD), cytopathic effects (CPE), or lysis by CTL. It is possible that some degree of Ag-driven proliferation may occur without activation of viral gene expression. Homeostatic proliferation of memory cells may also occur without reactivating viral gene expression. For some infected cells, integration of the provirus into genes associated with cell growth may also stimulate proliferation. See text for references.

Evidence for latent infection of resting memory CD4+ T cells

This model for latent HIV-1 infection as a barrier to cure is supported by several lines of evidence. First, replication-competent HIV-1 can be readily recovered from highly purified resting CD4+ T cells from essentially all infected individuals, regardless of the duration of ART (12, 13, 15, 16, 18, 108). Recovery requires activating the cells to reverse latency, as predicted by the model. As discussed below, recovery only fails when the size of the latent reservoir is substantially reduced (44, 109–111). Controversy remains over the question of whether other cell types, including macrophages, serve as stable HIV-1 reservoirs (112–123). To date, long-term persistence of replication-competent HIV-1 in the setting of optimal ART has only been demonstrated for resting CD4+ T cells (124). This may in part reflect the difficulty of sampling tissue macrophages, particularly in sites such as the CNS. Persistence in tissue macrophages can in principle be studied in novel humanized mouse models (123) and in the SIV model, but only through the use of animals on fully suppressive, long-term ART and with the caveat that restriction by SAMHD1 is counteracted by SIV Vpx (68, 69). Second, latent HIV-1 is found in resting memory CD4+ T cells but only to a limited extent in naive CD4+ T cells (12, 19–23). Third, the generation of latently infected cells can be reproduced in vitro in primary CD4+ T cells that have been activated in some manner, infected, and then cultured to allow reversion to a resting state (125–129). Restimulation of these cells through the TCR leads to HIV-1 gene expression. Taken together, these results support persistence of latent HIV-1 in resting CD4+ T cells that have been previously infected while in an activated state.

The general concept of HIV-1 latency is also strongly supported by the cure and “near cure” cases of the “Berlin patient” (109), the two “Boston patients” (110, 111), and the “Mississippi baby” (44). The Boston and Berlin patients were HIV-1–infected individuals who developed malignancies requiring hematopoietic stem cell transplantation (HSCT), resulting in immune reconstitution with donor cells. The Berlin patient received HSCT from a donor whose cells were homozygous for a deletion in CCR5 and was cured, as the reconstituting T cells were not permissive for entry of R5-tropic HIV-1 (109). Attempts to reproduce this cure have thus far been unsuccessful due in large part to progression of the malignancy. In one case, the appearance of viral variants that use the alternative HIV-1 coreceptor, CXCR4, has been noted (130). The Boston patients received HSCT from donors with wild-type CCR5, and ART was continued throughout the transplant period to protect donor cells from infection. When apparently complete reconstitution with donor T cells had occurred, and HIV-1 was no longer detectable by standard assays, ART was interrupted. The patients maintained suppression of viremia for 3 and 8 mo before sudden and dramatic rebounds.

The Mississippi baby, born to an infected mother who had no prenatal care, had a plasma HIV-1 RNA level of ∼20,000 copies/ml shortly after birth and was immediately started on ART. Plasma HIV-1 RNA declined to below the limit of detection and remained there even after treatment was interrupted against medical advice between 15 and 18 mo of age. Treatment was not restarted, and viremia remained undetectable for >2 y before suddenly rebounding. Importantly, HIV-1–specific T cell responses were absent in all three subjects because of the transplant process or early treatment. Abs to HIV-1 were not detected in the Mississippi baby and were markedly decreased in the Boston patients. Because HIV-1 replication is exponential in the absence of immune responses and ART, HIV-1 persistence for months or years in these patients can be best explained by the nonreplicating or latent form of the virus. In these cases, HSCT or early ART delayed rebound by reducing the number of latently infected cells to the point where stochastic reactivation was a rare event (107).

Explanations for the long t1/2 of the latent reservoir

The decay rate of the latent reservoir was originally measured using a viral outgrowth assay, which quantifies viral outgrowth from limiting dilutions of mitogen-stimulated resting CD4+ T cells from patients on ART (13, 131–133). The original viral outgrowth assay–based measurements of the reservoir decay, published in 1999 and 2003, indicated a t1/2 of 3.7 y (16, 17). This value was confirmed in a more recent study (t1/2 of 3.6 y), indicating that despite the development of newer, less toxic, and more convenient ART regimens, the fundamental problem of the reservoir as a barrier to cure has not been overcome (18). A critical issue is whether the remarkable stability of the reservoir is the result of normal homeostatic mechanisms that maintain immunologic memory or other factors.

One controversial explanation for stability is that the reservoir is constantly replenished by a low level of de novo infection that continues despite ART (134). This replication may reflect inadequate drug levels in certain anatomical sites including the lymph nodes (135, 136) or cell-to-cell spread, which is more difficult to block with ART (137). However, multiple lines of evidence indicate that ART effectively curtails new infection of susceptible cells. Because HIV-1 replication is invariably accompanied by the progressive accumulation of mutations (138) reflecting the error-prone nature of reverse transcriptase (139) and possibly hypermutation by the host restriction factor APOBEC3G (40, 140–143), the lack of sequence evolution in the viral reservoir (22, 97, 100, 144, 145) indicates that ART blocks ongoing cycles of viral replication. A recent study claiming that viral evolution is occurring during ART is confounded by sampling only in the first 6 mo of ART, a period during which short-lived populations of infected cells not representative of the stable reservoir are dominant (146). Prior to the development of effective ART, a dominant clinical issue was the evolution of drug resistance (147–151), but the incidence of resistance is now decreasing (152–154). Indeed, there are overwhelming clinical data that ART is effective, and treated patients can expect a near normal life expectancy (3, 155–158). As mentioned above, the failure of ART intensification to reduce RV indicates that current ART regimens stop new infection events (103–105). Finally, in the delayed rebound cases mentioned above, HIV-1 persistence during ART cannot be explained by ongoing replication, as this would have led to immediate rebound. Therefore, the stability of the latent reservoir is most likely due to the long t1/2 of memory T cells and their renewal through proliferation.

Functional studies have shown that memory CD4+ T cell responses in humans can provide lifelong immunity. In individuals who received the smallpox vaccine or cleared hepatitis C infection, virus-specific CD4+ T cell responses persist for decades despite the absence of further Ag exposure (159, 160). Early studies of the memory cell lifespan in humans examined radiation-induced chromosomal abnormalities that preclude cell proliferation. This allowed estimates of the intermitotic t1/2 of lymphocytes (161, 162). The measured t1/2 of 22 wk for memory T cells is roughly consistent with subsequent in vivo measurements using glucose or deuterium labeling, which indicate a t1/2 on the order of months for human memory CD4+ T cells (163, 164; also reviewed in Ref. 165). This is substantially shorter than the t1/2 of individual naive T cells (1–8 y). Importantly, it is shorter than the t1/2 of the HIV-1 reservoir (3.7 y) and of functional memory T cell responses (8–12 y). The discrepancy between the half-life of individual memory T cells and the overall memory immune response suggests that proliferation of memory cells must contribute to the stability of the latent reservoir. However, as discussed above, productively infected cells have a very short t1/2, and therefore the concept that infected cells can proliferate is not well appreciated. The HIV-1 Vpr protein induces cell cycle arrest at G2 by interacting with a host E3 ubiquitin ligase (166, 167) and stimulating the degradation of host proteins, including the DNA replication factor MCM10 (168). For cells in a latent state of infection, this block to proliferation is not operative, and latently infected cells can, in principle, proliferate if the driving stimulus does not strongly upregulate HIV-1 gene expression (169–172).

Memory CD4+ T cell proliferation can be driven by Ag, cross-reactive recognition of other self or foreign peptides presented with MHC class II, or cytokines. In the murine system, neither Ag nor class II MHC is required for memory T cell persistence (173), although memory CD4+ T cells that persist in the absence of MHC class II are functionally impaired (174). The requirements for maintenance of human memory CD4+ T cell responses are less clear and could include interactions with cognate signals or cytokines. Little is currently known about the Ag specificity of cells harboring latent HIV-1, although a small subset of them may be HIV-1 specific (175). However, human memory CD4+ T cells exhibit cross-reactivity, and specificities for Ags never encountered can be detected among memory CD4+ T cells in peripheral blood (176). As discussed above, it is expected that stimuli acting through the TCR will upregulate expression of latent HIV-1, but this may not be the case for cytokine-driven proliferation. The cytokines implicated in memory T cell homeostasis and survival are IL-7 and IL-15 (reviewed in Ref. 177). IL-7 is required for stimulating homeostatic proliferation of memory CD4+ T cells. Mice deficient in IL-7 (or IL-7R) have severely reduced total T lymphocyte levels, as well as reduced splenic size and cellularity (178). IL-15 also plays a role in homeostatic proliferation of memory CD4+ T cells (179). Early in vitro studies indicated that IL-7 can actually induce expression of latent HIV-1 (180, 181). However, in patients on ART, infusion of IL-7 leads to the proliferation of memory CD4+ T cells, including latently infected cells, with little or no induction of HIV-1 gene expression (182, 183). In vitro studies in a primary cell model of HIV-1 latency confirm that latently infected cells can proliferate in response to IL-7 (plus IL-2) without upregulation of HIV-1 gene expression (169). These studies suggest that the latent reservoir can be maintained within memory T cells undergoing homeostatic turnover (Fig. 2). Analysis of memory T cell subsets has provided additional insight into this issue.

Memory CD4+ T cell subsets

Memory T cells can be divided into two main subsets, central memory (TCM) and effector memory cells (TEM), based on expression of homing and chemokine receptors involved in preferential trafficking to secondary lymphoid organs or peripheral sites, respectively (184). HIV-1 DNA is preferentially harbored in TCM and another subset of memory T cells, transitional memory T cells (TTM) (21). TTM have a phenotype (CD45RA−, CD27+, CCR7−) intermediate between TCM and TEM. The two main subsets of CD4+ memory T cells that harbor latent HIV-1, TCM and TTM, may provide a more stable reservoir for HIV-1 than TEM, which have a higher proliferative index and are more susceptible to programmed cell death (21, 185). A recent study using the viral outgrowth assay rather than PCR demonstrated replication-competent HIV-1 persisting in TCM but to a much lesser extent in TTM, indicating that TCM may represent the major source of persistent HIV-1 in most patients (186).

Another recently defined subset of memory CD4+ T cells that may contribute to HIV-1 persistence is the stem cell–like memory T cell (TSCM) subset (187). TSCM are phenotypically similar to naive T cells in that they are CD45RO−, CD45RA+, and CCR7+. However, they also express surface markers characteristic of memory cells, such as CD95 and IL-2Rβ (187). TSCM rapidly respond to Ag and secrete IFN-γ, IL-2, and TNF. They are also stimulated to proliferate by IL-7. A stepwise progression from naive T cells to TSCM to TCM to TEM has been proposed, with TSCM potentially able to give rise to other types of memory T cells and self-renew upon stimulation. TSCM can be infected with HIV-1 in vitro, and in patients on ART, HIV-1 DNA is present in TSCM at higher levels than in other memory subsets (188). Although latently infected TSCM represent only a small fraction of the total reservoir, they may be of particular importance because of their stability and capacity for self-renewal (23, 188).

In summary, analysis of memory subsets reveals HIV-1 genomes distributed in multiple memory cell subsets, with higher frequencies in subsets with greater potential to survive. Several issues remain. One concern is that many studies of the distribution of HIV-1 genomes in T cell subsets rely primarily on PCR-based measures of the proviral DNA. This is problematic in that the vast majority of proviruses in resting CD4+ T cells from treated patients are highly defective (189). There is also substantial patient-to-patient variability in the distribution of viral genomes within these subsets. Finally, these subsets are not static and can interconvert in ways that are not yet fully understood, and it is therefore unclear whether latent HIV-1 stably persists in a given subset.

Anatomical distribution of the latent reservoir

Most studies of the latent reservoir sample CD4+ T cells from peripheral blood. Given the continuous recirculation and wide tissue distribution of memory T cells, it is generally presumed that latently infected resting CD4+ T cells will be present in most secondary lymphoid organs and in nonlymphoid tissues (190–192). Early studies demonstrated latently infected cells at roughly equal frequency in blood and lymph nodes (12). In the SIV model, latently infected resting CD4+ T cells were demonstrated in blood, lymph node, and spleen (45, 46). Interestingly, as discussed below, some recently described memory cell populations that are not present in the blood may also contribute to HIV-1 persistence.

HIV-1 can infect follicular helper T cells (TFH) (193–196), and this population has received considerable attention because CD8+ CTL lack chemokine receptors needed for migrating into B cell follicles (196), thus making the follicles a site of “immune privilege.” In the subset of rhesus macaques that spontaneously control SIV, viral replication is restricted to TFH, presumably because CD8+ CTL lyse infected cells elsewhere in the node (196). The extent to which TFH serve as a long-term reservoir for HIV-1 in the setting of optimal ART remains to be determined. If latently infected TFH persist, HIV-1 eradication strategies may need to include not only latency reversing agents and stimuli to enhance the CD8+ CTL response (197), but also interventions to disrupt B cell follicles to permit access by CTL (196).

Another population of memory T cells that could potentially harbor latent HIV-1 is the tissue-resident memory T cell (TRM) population (198, 199). Pioneering studies in the murine system demonstrated wide distribution of memory CD4+ T cells, including in nonlymphoid tissues such as liver and lung (190). Subpopulations of memory cells may be generated in or recruited to particular nonlymphoid tissues where they reside for long periods of time (192, 199). These TRM lack expression of CCR7 and share phenotypic and functional properties with TEM. However, unlike other memory subsets, they express CD69, a cell surface lectin that is upregulated at early times following T cell activation. In humans, most TEM in lymphoid and mucosal tissues, including lungs and intestines, express CD69 and therefore may be retained in these sites as TRM (191, 200). Human skin also contains significant TRM populations (198). Thus far, TRM have not been directly examined for the presence of latent HIV-1. However, persistent HIV-1 has been detected in gut-associated lymphoid tissue of individuals on ART (201, 202). TRM are prominent in the lamina propria and among intraepithelial lymphocytes, and it is possible that TRM harbor HIV-1. Many CD4+ TRM exhibit activated phenotypes, with reduced surface expression of CD28 (191), and therefore it is unclear whether latent infection can be established in these cells. Further characterization of tissue-specific reservoirs for HIV-1 is an important research priority.

Evidence for clonal expansion of infected cells

Consideration of the mechanism of memory cell homeostasis suggests that the stability of the latent reservoir is at least partially dependent on the ability of infected cells to proliferate. Several studies have provided direct evidence for clonal expansion of infected cells, beginning with studies of RV (100, 102). Although patients starting ART during chronic infection harbor diverse viral quasispecies (138), the RV is often dominated by identical sequences detected on independent sampling during months to years. The origin of these sequences is unknown, but may reflect infection of cells that then proliferate, giving rise to multiple progeny cells carrying identical proviruses (100, 102, 203). The fraction of identical HIV-1 sequences within samples from patients on ART increases with time, consistent with proliferation of infected cells (145). More recent studies have used integration site analysis to provide definitive evidence for the proliferation of infected cells. The sites of integration in different cells are generally different and are distributed widely throughout the human genome. Early studies in cell lines infected in vitro with HIV-1 (204) and in resting CD4+ T cells from patients on ART (205) revealed a strong preference for integration within active transcriptional units. However, integration occurs in either orientation with respect to the host gene, and there is no consensus sequence at the integration site. Therefore, the precise human sequence at the junction between host and HIV-1 DNA uniquely identifies individual infection events and thus all the clonal progeny of a single infected cell. Additionally, novel deep sequencing analysis allows enumeration of the clonal progeny of a single infected cell within a sample by detection of differences in the random break points in fragments of sheared DNA containing the same integration site (170, 206). Application of this and related approaches to CD4+ T cells from patients on ART has provided dramatic evidence for clonal expansion (170, 171, 207). Maldarelli et al. (170) showed that 43% of 2410 integration sites in CD4+ T cells from five patients was in clonally expanded cells. The finding that multiple cells with the same integration site can be captured in a single blood sample reflects dramatic clonal expansion in vivo.

Interestingly, some expanded clones had proviruses integrated in human genes associated with cell growth, and some of these genes have been observed to contain integrated proviruses in multiple independent studies (170, 171, 205, 207, 208). These include myocardin-like protein 2, a transcription factor, and basic leucine zipper transcription factor 2, a transcription regulator affecting lymphocyte growth, activation, senescence, and cytokine homeostasis. For these genes, integration events were found in a specific region of the gene and in the same transcriptional orientation as the host gene. This skewed pattern reflects a postintegration selection process that favors the in vivo growth and survival of cells with those integration events because these patterns were not seen in in vitro infections (170, 171, 204). These results raise the interesting possibility that integration into certain host genes contributes to HIV-1 persistence by stimulating infected cells to proliferate in a manner distinct from homeostatic proliferation. The molecular mechanisms are currently unclear.

A caveat to these studies is that the methods used do not capture the full sequence of the integrated provirus. Some methods capture only the junction between host and HIV-1 DNA. Given that the vast majority of proviruses are defective, as a result of large internal deletions or APOBEC3G-mediated hypermutation (189, 207), it must be assumed that most expanded clones carry defective proviruses. There is no selective pressure against cells carrying defective proviruses that do not produce viral proteins. Previous studies have described expanded clones carrying defective proviruses, some of which persist for many years (22, 209). However, a recent report has described dramatic in vivo expansion of an infected CD4+ T cell clone in a treated patient who also had squamous cell carcinoma (210). Importantly, this clone was capable of producing replication-competent virus. The integration site could not be precisely localized because it was in a region of repetitive sequence. The clone was found widely distributed in sites of metastatic tumor throughout the body, raising the possibility that the clonal expansion occurred in response to tumor Ag. A current issue of great importance is the extent to which expanded cellular clones harbor replication-competent HIV-1.

Implications

The stability of the latent reservoir is the principal reason that HIV-1 infection cannot be cured. The normal mechanisms that maintain immunologic memory provide a simple explanation for this stability. However, the pool of latently infected cells is not static. Although the total pool size decreases only very slowly, cells in the reservoir are continually being activated to produce virus that is evident as RV. These cells may die, but homeostatic proliferation of memory cells helps to balance the loss. Additionally, a more cell-autonomous process of proliferation driven by integration site–dependent alterations in host gene expression may allow some infected cells to undergo dramatic clonal expansion. Efforts to target the latent reservoir have generally assumed that intervention-dependent reductions in the frequency of latently infected cells will be stable so that repeated interventions will ultimately allow cure. The possibility that subpopulations of infected cells can continue to proliferate may further complicate eradication efforts.

Disclosures

The authors have no financial conflicts of interest.

Acknowledgments

We thank Dr. Janet Siliciano for critically reading the manuscript.

Footnotes

  • This work was supported by the Martin Delaney Collaboratory of AIDS Researchers for Eradication and Delaney AIDS Research Enterprise (National Institutes of Health Grants AI096113 and 1U19AI096109), amfAR, The Foundation for AIDS Research Research Consortium on HIV Eradication Grant from the Foundation for AIDS Research (Grant amFAR 108165-50-RGRL), the Johns Hopkins Center for AIDS Research (National Institutes of Health Grant P30AI094189), National Institutes of Health Grant AI43222, and by the Howard Hughes Medical Institute and the Bill & Melinda Gates Foundation. D.L.F. is supported by National Institutes of Health Grants AI100119, AI106697, and HL116136.

  • Abbreviations used in this article:

    ART
    antiretroviral therapy
    HSCT
    hematopoietic stem cell transplantation
    RV
    residual viremia
    TCM
    central memory T cell
    TEM
    effector memory T cell
    TFH
    follicular helper T cell
    TRM
    tissue-resident memory T cell
    TSCM
    stem cell–like memory T cell
    TTM
    transitional memory T cell.

  • Received February 26, 2016.
  • Accepted April 12, 2016.
  • Copyright © 2016 by The American Association of Immunologists, Inc.

References

  1. ↵
    1. Lundgren J. D.,
    2. A. G. Babiker,
    3. F. Gordin,
    4. S. Emery,
    5. B. Grund,
    6. S. Sharma,
    7. A. Avihingsanon,
    8. D. A. Cooper,
    9. G. Fätkenheuer,
    10. J. M. Llibre,
    11. et al,
    12. INSIGHT START Study Group
    . 2015. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N. Engl. J. Med. 373: 795–807.
    OpenUrlCrossRefPubMed
    1. Danel C.,
    2. R. Moh,
    3. D. Gabillard,
    4. A. Badje,
    5. J. Le Carrou,
    6. T. Ouassa,
    7. E. Ouattara,
    8. A. Anzian,
    9. J. B. Ntakpé,
    10. et al,
    11. TEMPRANO ANRS 12136 Study Group
    . 2015. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N. Engl. J. Med. 373: 808–822.
    OpenUrlCrossRefPubMed
  2. ↵
    1. Günthard H. F.,
    2. J. A. Aberg,
    3. J. J. Eron,
    4. J. F. Hoy,
    5. A. Telenti,
    6. C. A. Benson,
    7. D. M. Burger,
    8. P. Cahn,
    9. J. E. Gallant,
    10. M. J. Glesby,
    11. et al,
    12. International Antiviral Society–USA Panel
    . 2014. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society–USA Panel. JAMA 312: 410–425.
    OpenUrlCrossRefPubMed
  3. ↵
    1. Gulick R. M.,
    2. J. W. Mellors,
    3. D. Havlir,
    4. J. J. Eron,
    5. C. Gonzalez,
    6. D. McMahon,
    7. D. D. Richman,
    8. F. T. Valentine,
    9. L. Jonas,
    10. A. Meibohm,
    11. et al
    . 1997. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337: 734–739.
    OpenUrlCrossRefPubMed
    1. Hammer S. M.,
    2. K. E. Squires,
    3. M. D. Hughes,
    4. J. M. Grimes,
    5. L. M. Demeter,
    6. J. S. Currier,
    7. J. J. Eron Jr..,
    8. J. E. Feinberg,
    9. H. H. Balfour Jr..,
    10. L. R. Deyton,
    11. et al,
    12. AIDS Clinical Trials Group 320 Study Team
    . 1997. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N. Engl. J. Med. 337: 725–733.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Perelson A. S.,
    2. P. Essunger,
    3. Y. Cao,
    4. M. Vesanen,
    5. A. Hurley,
    6. K. Saksela,
    7. M. Markowitz,
    8. D. D. Ho
    . 1997. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387: 188–191.
    OpenUrlCrossRefPubMed
  5. ↵
    1. Davey R. T., Jr..,
    2. N. Bhat,
    3. C. Yoder,
    4. T. W. Chun,
    5. J. A. Metcalf,
    6. R. Dewar,
    7. V. Natarajan,
    8. R. A. Lempicki,
    9. J. W. Adelsberger,
    10. K. D. Miller,
    11. et al
    . 1999. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. USA 96: 15109–15114.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Rothenberger M. K.,
    2. B. F. Keele,
    3. S. W. Wietgrefe,
    4. C. V. Fletcher,
    5. G. J. Beilman,
    6. J. G. Chipman,
    7. A. Khoruts,
    8. J. D. Estes,
    9. J. Anderson,
    10. S. P. Callisto,
    11. et al
    . 2015. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proc. Natl. Acad. Sci. USA 112: E1126–E1134.
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Richman D. D.,
    2. D. M. Margolis,
    3. M. Delaney,
    4. W. C. Greene,
    5. D. Hazuda,
    6. R. J. Pomerantz
    . 2009. The challenge of finding a cure for HIV infection. Science 323: 1304–1307.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Deeks S. G.,
    2. B. Autran,
    3. B. Berkhout,
    4. M. Benkirane,
    5. S. Cairns,
    6. N. Chomont,
    7. T. W. Chun,
    8. M. Churchill,
    9. M. Di Mascio,
    10. C. Katlama,
    11. et al,
    12. International AIDS Society Scientific Working Group on HIV Cure
    . 2012. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12: 607–614.
    OpenUrlCrossRefPubMed
  9. ↵
    1. Chun T. W.,
    2. D. Finzi,
    3. J. Margolick,
    4. K. Chadwick,
    5. D. Schwartz,
    6. R. F. Siliciano
    . 1995. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat. Med. 1: 1284–1290.
    OpenUrlCrossRefPubMed
  10. ↵
    1. Chun T. W.,
    2. L. Carruth,
    3. D. Finzi,
    4. X. Shen,
    5. J. A. DiGiuseppe,
    6. H. Taylor,
    7. M. Hermankova,
    8. K. Chadwick,
    9. J. Margolick,
    10. T. C. Quinn,
    11. et al
    . 1997. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188.
    OpenUrlCrossRefPubMed
  11. ↵
    1. Finzi D.,
    2. M. Hermankova,
    3. T. Pierson,
    4. L. M. Carruth,
    5. C. Buck,
    6. R. E. Chaisson,
    7. T. C. Quinn,
    8. K. Chadwick,
    9. J. Margolick,
    10. R. Brookmeyer,
    11. et al
    . 1997. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278: 1295–1300.
    OpenUrlAbstract/FREE Full Text
    1. Wong J. K.,
    2. M. Hezareh,
    3. H. F. Günthard,
    4. D. V. Havlir,
    5. C. C. Ignacio,
    6. C. A. Spina,
    7. D. D. Richman
    . 1997. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278: 1291–1295.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Chun T. W.,
    2. L. Stuyver,
    3. S. B. Mizell,
    4. L. A. Ehler,
    5. J. A. Mican,
    6. M. Baseler,
    7. A. L. Lloyd,
    8. M. A. Nowak,
    9. A. S. Fauci
    . 1997. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94: 13193–13197.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Finzi D.,
    2. J. Blankson,
    3. J. D. Siliciano,
    4. J. B. Margolick,
    5. K. Chadwick,
    6. T. Pierson,
    7. K. Smith,
    8. J. Lisziewicz,
    9. F. Lori,
    10. C. Flexner,
    11. et al
    . 1999. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5: 512–517.
    OpenUrlCrossRefPubMed
  14. ↵
    1. Siliciano J. D.,
    2. J. Kajdas,
    3. D. Finzi,
    4. T. C. Quinn,
    5. K. Chadwick,
    6. J. B. Margolick,
    7. C. Kovacs,
    8. S. J. Gange,
    9. R. F. Siliciano
    . 2003. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9: 727–728.
    OpenUrlCrossRefPubMed
  15. ↵
    1. Crooks A. M.,
    2. R. Bateson,
    3. A. B. Cope,
    4. N. P. Dahl,
    5. M. K. Griggs,
    6. J. D. Kuruc,
    7. C. L. Gay,
    8. J. J. Eron,
    9. D. M. Margolis,
    10. R. J. Bosch,
    11. N. M. Archin
    . 2015. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis. 212: 1361–1355.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Pierson T.,
    2. T. L. Hoffman,
    3. J. Blankson,
    4. D. Finzi,
    5. K. Chadwick,
    6. J. B. Margolick,
    7. C. Buck,
    8. J. D. Siliciano,
    9. R. W. Doms,
    10. R. F. Siliciano
    . 2000. Characterization of chemokine receptor utilization of viruses in the latent reservoir for human immunodeficiency virus type 1. J. Virol. 74: 7824–7833.
    OpenUrlAbstract/FREE Full Text
    1. Brenchley J. M.,
    2. B. J. Hill,
    3. D. R. Ambrozak,
    4. D. A. Price,
    5. F. J. Guenaga,
    6. J. P. Casazza,
    7. J. Kuruppu,
    8. J. Yazdani,
    9. S. A. Migueles,
    10. M. Connors,
    11. et al
    . 2004. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J. Virol. 78: 1160–1168.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Chomont N.,
    2. M. El-Far,
    3. P. Ancuta,
    4. L. Trautmann,
    5. F. A. Procopio,
    6. B. Yassine-Diab,
    7. G. Boucher,
    8. M. R. Boulassel,
    9. G. Ghattas,
    10. J. M. Brenchley,
    11. et al
    . 2009. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15: 893–900.
    OpenUrlCrossRefPubMed
  18. ↵
    1. Josefsson L.,
    2. S. von Stockenstrom,
    3. N. R. Faria,
    4. E. Sinclair,
    5. P. Bacchetti,
    6. M. Killian,
    7. L. Epling,
    8. A. Tan,
    9. T. Ho,
    10. P. Lemey,
    11. et al
    . 2013. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc. Natl. Acad. Sci. USA 110: E4987–E4996.
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Jaafoura S.,
    2. M. G. de Goër de Herve,
    3. E. A. Hernandez-Vargas,
    4. H. Hendel-Chavez,
    5. M. Abdoh,
    6. M. C. Mateo,
    7. R. Krzysiek,
    8. M. Merad,
    9. R. Seng,
    10. M. Tardieu,
    11. et al
    . 2014. Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4+ memory T cells. Nat. Commun. 5: 5407.
    OpenUrlCrossRefPubMed
  20. ↵
    1. Karn J.
    2011. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr. Opin. HIV AIDS 6: 4–11.
    OpenUrlCrossRefPubMed
    1. Taube R.,
    2. M. Peterlin
    . 2013. Lost in transcription: molecular mechanisms that control HIV latency. Viruses 5: 902–927.
    OpenUrlCrossRefPubMed
    1. Ruelas D. S.,
    2. W. C. Greene
    . 2013. An integrated overview of HIV-1 latency. Cell 155: 519–529.
    OpenUrlCrossRefPubMed
  21. ↵
    1. Dahabieh M. S.,
    2. E. Battivelli,
    3. E. Verdin
    . 2015. Understanding HIV latency: the road to an HIV cure. Annu. Rev. Med. 66: 407–421.
    OpenUrlCrossRefPubMed
  22. ↵
    1. Spivak A. M.,
    2. V. Planelles
    . 2016. HIV-1 eradication: early trials (and tribulations). Trends Mol. Med. 22: 10–27.
    OpenUrlCrossRefPubMed
    1. Archin N. M.,
    2. J. M. Sung,
    3. C. Garrido,
    4. N. Soriano-Sarabia,
    5. D. M. Margolis
    . 2014. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat. Rev. Microbiol. 12: 750–764.
    OpenUrlCrossRefPubMed
  23. ↵
    1. Katlama C.,
    2. S. G. Deeks,
    3. B. Autran,
    4. J. Martinez-Picado,
    5. J. van Lunzen,
    6. C. Rouzioux,
    7. M. Miller,
    8. S. Vella,
    9. J. E. Schmitz,
    10. J. Ahlers,
    11. et al
    . 2013. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet 381: 2109–2117.
    OpenUrlCrossRefPubMed
  24. ↵
    1. Speck S. H.,
    2. D. Ganem
    . 2010. Viral latency and its regulation: lessons from the γ-herpesviruses. Cell Host Microbe 8: 100–115.
    OpenUrlCrossRefPubMed
  25. ↵
    1. Perng G. C.,
    2. C. Jones
    . 2010. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip. Perspect. Infect. Dis. 2010: 262415.
    OpenUrlCrossRefPubMed
  26. ↵
    1. Piatak M., Jr..,
    2. M. S. Saag,
    3. L. C. Yang,
    4. S. J. Clark,
    5. J. C. Kappes,
    6. K. C. Luk,
    7. B. H. Hahn,
    8. G. M. Shaw,
    9. J. D. Lifson
    . 1993. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259: 1749–1754.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Borrow P.,
    2. H. Lewicki,
    3. X. Wei,
    4. M. S. Horwitz,
    5. N. Peffer,
    6. H. Meyers,
    7. J. A. Nelson,
    8. J. E. Gairin,
    9. B. H. Hahn,
    10. M. B. Oldstone,
    11. G. M. Shaw
    . 1997. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 3: 205–211.
    OpenUrlCrossRefPubMed
    1. Wei X.,
    2. J. M. Decker,
    3. S. Wang,
    4. H. Hui,
    5. J. C. Kappes,
    6. X. Wu,
    7. J. F. Salazar-Gonzalez,
    8. M. G. Salazar,
    9. J. M. Kilby,
    10. M. S. Saag,
    11. et al
    . 2003. Antibody neutralization and escape by HIV-1. Nature 422: 307–312.
    OpenUrlCrossRefPubMed
    1. Richman D. D.,
    2. T. Wrin,
    3. S. J. Little,
    4. C. J. Petropoulos
    . 2003. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 100: 4144–4149.
    OpenUrlAbstract/FREE Full Text
    1. Leslie A. J.,
    2. K. J. Pfafferott,
    3. P. Chetty,
    4. R. Draenert,
    5. M. M. Addo,
    6. M. Feeney,
    7. Y. Tang,
    8. E. C. Holmes,
    9. T. Allen,
    10. J. G. Prado,
    11. et al
    . 2004. HIV evolution: CTL escape mutation and reversion after transmission. Nat. Med. 10: 282–289.
    OpenUrlCrossRefPubMed
    1. Jones N. A.,
    2. X. Wei,
    3. D. R. Flower,
    4. M. Wong,
    5. F. Michor,
    6. M. S. Saag,
    7. B. H. Hahn,
    8. M. A. Nowak,
    9. G. M. Shaw,
    10. P. Borrow
    . 2004. Determinants of human immunodeficiency virus type 1 escape from the primary CD8+ cytotoxic T lymphocyte response. J. Exp. Med. 200: 1243–1256.
    OpenUrlAbstract/FREE Full Text
    1. Frost S. D.,
    2. T. Wrin,
    3. D. M. Smith,
    4. S. L. Kosakovsky Pond,
    5. Y. Liu,
    6. E. Paxinos,
    7. C. Chappey,
    8. J. Galovich,
    9. J. Beauchaine,
    10. C. J. Petropoulos,
    11. et al
    . 2005. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc. Natl. Acad. Sci. USA 102: 18514–18519.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Wood N.,
    2. T. Bhattacharya,
    3. B. F. Keele,
    4. E. Giorgi,
    5. M. Liu,
    6. B. Gaschen,
    7. M. Daniels,
    8. G. Ferrari,
    9. B. F. Haynes,
    10. A. McMichael,
    11. et al
    . 2009. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog. 5: e1000414.
    OpenUrlCrossRefPubMed
  29. ↵
    1. Deng K.,
    2. M. Pertea,
    3. A. Rongvaux,
    4. L. Wang,
    5. C. M. Durand,
    6. G. Ghiaur,
    7. J. Lai,
    8. H. L. McHugh,
    9. H. Hao,
    10. H. Zhang,
    11. et al
    . 2015. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517: 381–385.
    OpenUrlCrossRefPubMed
  30. ↵
    1. Chun T. W.,
    2. D. Engel,
    3. M. M. Berrey,
    4. T. Shea,
    5. L. Corey,
    6. A. S. Fauci
    . 1998. Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 95: 8869–8873.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Buckheit R. W., III.,
    2. M. Salgado,
    3. K. O. Martins,
    4. J. N. Blankson
    . 2013. The implications of viral reservoirs on the elite control of HIV-1 infection. Cell. Mol. Life Sci. 70: 1009–1019.
    OpenUrlCrossRefPubMed
  32. ↵
    1. Persaud D.,
    2. H. Gay,
    3. C. Ziemniak,
    4. Y. H. Chen,
    5. M. Piatak Jr..,
    6. T. W. Chun,
    7. M. Strain,
    8. D. Richman,
    9. K. Luzuriaga
    . 2013. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med. 369: 1828–1835.
    OpenUrlCrossRefPubMed
  33. ↵
    1. Shen A.,
    2. M. C. Zink,
    3. J. L. Mankowski,
    4. K. Chadwick,
    5. J. B. Margolick,
    6. L. M. Carruth,
    7. M. Li,
    8. J. E. Clements,
    9. R. F. Siliciano
    . 2003. Resting CD4+ T lymphocytes but not thymocytes provide a latent viral reservoir in a simian immunodeficiency virus-Macaca nemestrina model of human immunodeficiency virus type 1-infected patients on highly active antiretroviral therapy. J. Virol. 77: 4938–4949.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Dinoso J. B.,
    2. S. A. Rabi,
    3. J. N. Blankson,
    4. L. Gama,
    5. J. L. Mankowski,
    6. R. F. Siliciano,
    7. M. C. Zink,
    8. J. E. Clements
    . 2009. A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J. Virol. 83: 9247–9257.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Whitney J. B.,
    2. A. L. Hill,
    3. S. Sanisetty,
    4. P. Penaloza-MacMaster,
    5. J. Liu,
    6. M. Shetty,
    7. L. Parenteau,
    8. C. Cabral,
    9. J. Shields,
    10. S. Blackmore,
    11. et al
    . 2014. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512: 74–77.
    OpenUrlCrossRefPubMed
  36. ↵
    1. Rouzine I. M.,
    2. A. D. Weinberger,
    3. L. S. Weinberger
    . 2015. An evolutionary role for HIV latency in enhancing viral transmission. Cell 160: 1002–1012.
    OpenUrlCrossRefPubMed
  37. ↵
    1. Razooky B. S.,
    2. A. Pai,
    3. K. Aull,
    4. I. M. Rouzine,
    5. L. S. Weinberger
    . 2015. A hardwired HIV latency program. Cell 160: 990–1001.
    OpenUrlCrossRefPubMed
  38. ↵
    1. Margolick J. B.,
    2. D. J. Volkman,
    3. T. M. Folks,
    4. A. S. Fauci
    . 1987. Amplification of HTLV-III/LAV infection by antigen-induced activation of T cells and direct suppression by virus of lymphocyte blastogenic responses. J. Immunol. 138: 1719–1723.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Zhang Z.,
    2. T. Schuler,
    3. M. Zupancic,
    4. S. Wietgrefe,
    5. K. A. Staskus,
    6. K. A. Reimann,
    7. T. A. Reinhart,
    8. M. Rogan,
    9. W. Cavert,
    10. C. J. Miller,
    11. et al
    . 1999. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286: 1353–1357.
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Deng H.,
    2. R. Liu,
    3. W. Ellmeier,
    4. S. Choe,
    5. D. Unutmaz,
    6. M. Burkhart,
    7. P. Di Marzio,
    8. S. Marmon,
    9. R. E. Sutton,
    10. C. M. Hill,
    11. et al
    . 1996. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381: 661–666.
    OpenUrlCrossRefPubMed
    1. Alkhatib G.,
    2. C. Combadiere,
    3. C. C. Broder,
    4. Y. Feng,
    5. P. E. Kennedy,
    6. P. M. Murphy,
    7. E. A. Berger
    . 1996. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272: 1955–1958.
    OpenUrlAbstract/FREE Full Text
    1. Wu L.,
    2. N. P. Gerard,
    3. R. Wyatt,
    4. H. Choe,
    5. C. Parolin,
    6. N. Ruffing,
    7. A. Borsetti,
    8. A. A. Cardoso,
    9. E. Desjardin,
    10. W. Newman,
    11. et al
    . 1996. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384: 179–183.
    OpenUrlCrossRefPubMed
  41. ↵
    1. Trkola A.,
    2. T. Dragic,
    3. J. Arthos,
    4. J. M. Binley,
    5. W. C. Olson,
    6. G. P. Allaway,
    7. C. Cheng-Mayer,
    8. J. Robinson,
    9. P. J. Maddon,
    10. J. P. Moore
    . 1996. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384: 184–187.
    OpenUrlCrossRefPubMed
    1. Choe H.,
    2. M. Farzan,
    3. Y. Sun,
    4. N. Sullivan,
    5. B. Rollins,
    6. P. D. Ponath,
    7. L. Wu,
    8. C. R. Mackay,
    9. G. LaRosa,
    10. W. Newman,
    11. et al
    . 1996. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85: 1135–1148.
    OpenUrlCrossRefPubMed
  42. ↵
    1. Dragic T.,
    2. V. Litwin,
    3. G. P. Allaway,
    4. S. R. Martin,
    5. Y. Huang,
    6. K. A. Nagashima,
    7. C. Cayanan,
    8. P. J. Maddon,
    9. R. A. Koup,
    10. J. P. Moore,
    11. W. A. Paxton
    . 1996. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381: 667–673.
    OpenUrlCrossRefPubMed
  43. ↵
    1. Bleul C. C.,
    2. L. Wu,
    3. J. A. Hoxie,
    4. T. A. Springer,
    5. C. R. Mackay
    . 1997. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. USA 94: 1925–1930.
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Mohammadi P.,
    2. S. Desfarges,
    3. I. Bartha,
    4. B. Joos,
    5. N. Zangger,
    6. M. Muñoz,
    7. H. F. Günthard,
    8. N. Beerenwinkel,
    9. A. Telenti,
    10. A. Ciuffi
    . 2013. 24 hours in the life of HIV-1 in a T cell line. PLoS Pathog. 9: e1003161.
    OpenUrlCrossRefPubMed
  45. ↵
    1. Nabel G.,
    2. D. Baltimore
    . 1987. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326: 711–713.
    OpenUrlCrossRefPubMed
    1. Böhnlein E.,
    2. J. W. Lowenthal,
    3. M. Siekevitz,
    4. D. W. Ballard,
    5. B. R. Franza,
    6. W. C. Greene
    . 1988. The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-α gene and type 1 HIV. Cell 53: 827–836.
    OpenUrlCrossRefPubMed
    1. Duh E. J.,
    2. W. J. Maury,
    3. T. M. Folks,
    4. A. S. Fauci,
    5. A. B. Rabson
    . 1989. Tumor necrosis factor α activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-κB sites in the long terminal repeat. Proc. Natl. Acad. Sci. USA 86: 5974–5978.
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Adams M.,
    2. L. Sharmeen,
    3. J. Kimpton,
    4. J. M. Romeo,
    5. J. V. Garcia,
    6. B. M. Peterlin,
    7. M. Groudine,
    8. M. Emerman
    . 1994. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc. Natl. Acad. Sci. USA 91: 3862–3866.
    OpenUrlAbstract/FREE Full Text
    1. Kinoshita S.,
    2. B. K. Chen,
    3. H. Kaneshima,
    4. G. P. Nolan
    . 1998. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell 95: 595–604.
    OpenUrlCrossRefPubMed
  47. ↵
    1. Rice A. P.,
    2. C. H. Herrmann
    . 2003. Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages. Curr. HIV Res. 1: 395–404.
    OpenUrlCrossRefPubMed
  48. ↵
    1. Lin X.,
    2. D. Irwin,
    3. S. Kanazawa,
    4. L. Huang,
    5. J. Romeo,
    6. T. S. Yen,
    7. B. M. Peterlin
    . 2003. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir. J. Virol. 77: 8227–8236.
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Pessler F.,
    2. R. Q. Cron
    . 2004. Reciprocal regulation of the nuclear factor of activated T cells and HIV-1. Genes Immun. 5: 158–167.
    OpenUrlCrossRefPubMed
  50. ↵
    1. Laguette N.,
    2. B. Sobhian,
    3. N. Casartelli,
    4. M. Ringeard,
    5. C. Chable-Bessia,
    6. E. Ségéral,
    7. A. Yatim,
    8. S. Emiliani,
    9. O. Schwartz,
    10. M. Benkirane
    . 2011. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474: 654–657.
    OpenUrlCrossRefPubMed
  51. ↵
    1. Berger A.,
    2. A. F. Sommer,
    3. J. Zwarg,
    4. M. Hamdorf,
    5. K. Welzel,
    6. N. Esly,
    7. S. Panitz,
    8. A. Reuter,
    9. I. Ramos,
    10. A. Jatiani,
    11. et al
    . 2011. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog. 7: e1002425.
    OpenUrlCrossRefPubMed
  52. ↵
    1. Baldauf H. M.,
    2. X. Pan,
    3. E. Erikson,
    4. S. Schmidt,
    5. W. Daddacha,
    6. M. Burggraf,
    7. K. Schenkova,
    8. I. Ambiel,
    9. G. Wabnitz,
    10. T. Gramberg,
    11. et al
    . 2012. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18: 1682–1687.
    OpenUrlCrossRefPubMed
  53. ↵
    1. Romani B.,
    2. E. A. Cohen
    . 2012. Lentivirus Vpr and Vpx accessory proteins usurp the cullin4–DDB1 (DCAF1) E3 ubiquitin ligase. Curr. Opin. Virol. 2: 755–763.
    OpenUrlCrossRefPubMed
  54. ↵
    1. Zack J. A.,
    2. S. J. Arrigo,
    3. S. R. Weitsman,
    4. A. S. Go,
    5. A. Haislip,
    6. I. S. Chen
    . 1990. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61: 213–222.
    OpenUrlCrossRefPubMed
    1. Pierson T. C.,
    2. Y. Zhou,
    3. T. L. Kieffer,
    4. C. T. Ruff,
    5. C. Buck,
    6. R. F. Siliciano
    . 2002. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J. Virol. 76: 8518–8531.
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Taylor H. E.,
    2. G. E. Simmons Jr..,
    3. T. P. Mathews,
    4. A. K. Khatua,
    5. W. Popik,
    6. C. W. Lindsley,
    7. R. T. D’Aquila,
    8. H. A. Brown
    . 2015. Phospholipase D1 couples CD4+ T cell activation to c-Myc-dependent deoxyribonucleotide pool expansion and HIV-1 replication. PLoS Pathog. 11: e1004864.
    OpenUrlCrossRefPubMed
  56. ↵
    1. Yoder A.,
    2. D. Yu,
    3. L. Dong,
    4. S. R. Iyer,
    5. X. Xu,
    6. J. Kelly,
    7. J. Liu,
    8. W. Wang,
    9. P. J. Vorster,
    10. L. Agulto,
    11. et al
    . 2008. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 134: 782–792.
    OpenUrlCrossRefPubMed
  57. ↵
    1. Doitsh G.,
    2. N. L. Galloway,
    3. X. Geng,
    4. Z. Yang,
    5. K. M. Monroe,
    6. O. Zepeda,
    7. P. W. Hunt,
    8. H. Hatano,
    9. S. Sowinski,
    10. I. Muñoz-Arias,
    11. W. C. Greene
    . 2014. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505: 509–514.
    OpenUrlPubMed
    1. Monroe K. M.,
    2. Z. Yang,
    3. J. R. Johnson,
    4. X. Geng,
    5. G. Doitsh,
    6. N. J. Krogan,
    7. W. C. Greene
    . 2014. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343: 428–432.
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Muñoz-Arias I.,
    2. G. Doitsh,
    3. Z. Yang,
    4. S. Sowinski,
    5. D. Ruelas,
    6. W. C. Greene
    . 2015. Blood-derived CD4 T cells naturally resist pyroptosis during abortive HIV-1 infection. Cell Host Microbe 18: 463–470.
    OpenUrlCrossRefPubMed
  59. ↵
    1. Wei X.,
    2. S. K. Ghosh,
    3. M. E. Taylor,
    4. V. A. Johnson,
    5. E. A. Emini,
    6. P. Deutsch,
    7. J. D. Lifson,
    8. S. Bonhoeffer,
    9. M. A. Nowak,
    10. B. H. Hahn,
    11. et al
    . 1995. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373: 117–122.
    OpenUrlCrossRefPubMed
    1. Ho D. D.,
    2. A. U. Neumann,
    3. A. S. Perelson,
    4. W. Chen,
    5. J. M. Leonard,
    6. M. Markowitz
    . 1995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373: 123–126.
    OpenUrlCrossRefPubMed
  60. ↵
    1. Perelson A. S.,
    2. A. U. Neumann,
    3. M. Markowitz,
    4. J. M. Leonard,
    5. D. D. Ho
    . 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271: 1582–1586.
    OpenUrlAbstract
  61. ↵
    1. Ahmed R.,
    2. D. Gray
    . 1996. Immunological memory and protective immunity: understanding their relation. Science 272: 54–60.
    OpenUrlAbstract
  62. ↵
    1. Sakai K.,
    2. J. Dimas,
    3. M. J. Lenardo
    . 2006. The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc. Natl. Acad. Sci. USA 103: 3369–3374.
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Cooper A.,
    2. M. García,
    3. C. Petrovas,
    4. T. Yamamoto,
    5. R. A. Koup,
    6. G. J. Nabel
    . 2013. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 498: 376–379.
    OpenUrlCrossRefPubMed
  64. ↵
    1. Walker B. D.,
    2. S. Chakrabarti,
    3. B. Moss,
    4. T. J. Paradis,
    5. T. Flynn,
    6. A. G. Durno,
    7. R. S. Blumberg,
    8. J. C. Kaplan,
    9. M. S. Hirsch,
    10. R. T. Schooley
    . 1987. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328: 345–348.
    OpenUrlCrossRefPubMed
    1. Koup R. A.,
    2. J. T. Safrit,
    3. Y. Cao,
    4. C. A. Andrews,
    5. G. McLeod,
    6. W. Borkowsky,
    7. C. Farthing,
    8. D. D. Ho
    . 1994. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68: 4650–4655.
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Schmitz J. E.,
    2. M. J. Kuroda,
    3. S. Santra,
    4. V. G. Sasseville,
    5. M. A. Simon,
    6. M. A. Lifton,
    7. P. Racz,
    8. K. Tenner-Racz,
    9. M. Dalesandro,
    10. B. J. Scallon,
    11. et al
    . 1999. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283: 857–860.
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Wong J. K.,
    2. M. C. Strain,
    3. R. Porrata,
    4. E. Reay,
    5. S. Sankaran-Walters,
    6. C. C. Ignacio,
    7. T. Russell,
    8. S. K. Pillai,
    9. D. J. Looney,
    10. S. Dandekar
    . 2010. In vivo CD8+ T-cell suppression of siv viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog. 6: e1000748.
    OpenUrlCrossRefPubMed
  67. ↵
    1. Klatt N. R.,
    2. E. Shudo,
    3. A. M. Ortiz,
    4. J. C. Engram,
    5. M. Paiardini,
    6. B. Lawson,
    7. M. D. Miller,
    8. J. Else,
    9. I. Pandrea,
    10. J. D. Estes,
    11. et al
    . 2010. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 6: e1000747.
    OpenUrlCrossRefPubMed
  68. ↵
    1. He G.,
    2. L. Ylisastigui,
    3. D. M. Margolis
    . 2002. The regulation of HIV-1 gene expression: the emerging role of chromatin. DNA Cell Biol. 21: 697–705.
    OpenUrlCrossRefPubMed
    1. Ylisastigui L.,
    2. N. M. Archin,
    3. G. Lehrman,
    4. R. J. Bosch,
    5. D. M. Margolis
    . 2004. Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 18: 1101–1108.
    OpenUrlCrossRefPubMed
  69. ↵
    1. West M. J.,
    2. A. D. Lowe,
    3. J. Karn
    . 2001. Activation of human immunodeficiency virus transcription in T cells revisited: NF-κB p65 stimulates transcriptional elongation. J. Virol. 75: 8524–8537.
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Dornadula G.,
    2. H. Zhang,
    3. B. VanUitert,
    4. J. Stern,
    5. L. Livornese Jr..,
    6. M. J. Ingerman,
    7. J. Witek,
    8. R. J. Kedanis,
    9. J. Natkin,
    10. J. DeSimone,
    11. R. J. Pomerantz
    . 1999. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 282: 1627–1632.
    OpenUrlCrossRefPubMed
    1. Palmer S.,
    2. A. P. Wiegand,
    3. F. Maldarelli,
    4. H. Bazmi,
    5. J. M. Mican,
    6. M. Polis,
    7. R. L. Dewar,
    8. A. Planta,
    9. S. Liu,
    10. J. A. Metcalf,
    11. et al
    . 2003. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 41: 4531–4536.
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Maldarelli F.,
    2. S. Palmer,
    3. M. S. King,
    4. A. Wiegand,
    5. M. A. Polis,
    6. J. Mican,
    7. J. A. Kovacs,
    8. R. T. Davey,
    9. D. Rock-Kress,
    10. R. Dewar,
    11. et al
    . 2007. ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog. 3: e46.
    OpenUrlCrossRefPubMed
  72. ↵
    1. Hermankova M.,
    2. S. C. Ray,
    3. C. Ruff,
    4. M. Powell-Davis,
    5. R. Ingersoll,
    6. R. T. D’Aquila,
    7. T. C. Quinn,
    8. J. D. Siliciano,
    9. R. F. Siliciano,
    10. D. Persaud
    . 2001. HIV-1 drug resistance profiles in children and adults with viral load of <50 copies/ml receiving combination therapy. JAMA 286: 196–207.
    OpenUrlCrossRefPubMed
  73. ↵
    1. Kieffer T. L.,
    2. M. M. Finucane,
    3. R. E. Nettles,
    4. T. C. Quinn,
    5. K. W. Broman,
    6. S. C. Ray,
    7. D. Persaud,
    8. R. F. Siliciano
    . 2004. Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J. Infect. Dis. 189: 1452–1465.
    OpenUrlAbstract/FREE Full Text
    1. Persaud D.,
    2. G. K. Siberry,
    3. A. Ahonkhai,
    4. J. Kajdas,
    5. D. Monie,
    6. N. Hutton,
    7. D. C. Watson,
    8. T. C. Quinn,
    9. S. C. Ray,
    10. R. F. Siliciano
    . 2004. Continued production of drug-sensitive human immunodeficiency virus type 1 in children on combination antiretroviral therapy who have undetectable viral loads. J. Virol. 78: 968–979.
    OpenUrlAbstract/FREE Full Text
    1. Nettles R. E.,
    2. T. L. Kieffer,
    3. P. Kwon,
    4. D. Monie,
    5. Y. Han,
    6. T. Parsons,
    7. J. Cofrancesco Jr..,
    8. J. E. Gallant,
    9. T. C. Quinn,
    10. B. Jackson,
    11. et al
    . 2005. Intermittent HIV-1 viremia (blips) and drug resistance in patients receiving HAART. JAMA 293: 817–829.
    OpenUrlCrossRefPubMed
  74. ↵
    1. Bailey J. R.,
    2. A. R. Sedaghat,
    3. T. Kieffer,
    4. T. Brennan,
    5. P. K. Lee,
    6. M. Wind-Rotolo,
    7. C. M. Haggerty,
    8. A. R. Kamireddi,
    9. Y. Liu,
    10. J. Lee,
    11. et al
    . 2006. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J. Virol. 80: 6441–6457.
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Nickle D. C.,
    2. M. A. Jensen,
    3. D. Shriner,
    4. S. J. Brodie,
    5. L. M. Frenkel,
    6. J. E. Mittler,
    7. J. I. Mullins
    . 2003. Evolutionary indicators of human immunodeficiency virus type 1 reservoirs and compartments. J. Virol. 77: 5540–5546.
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Tobin N. H.,
    2. G. H. Learn,
    3. S. E. Holte,
    4. Y. Wang,
    5. A. J. Melvin,
    6. J. L. McKernan,
    7. D. M. Pawluk,
    8. K. M. Mohan,
    9. P. F. Lewis,
    10. J. I. Mullins,
    11. L. M. Frenkel
    . 2005. Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: expression of archival virus and replication of virus. J. Virol. 79: 9625–9634.
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Dinoso J. B.,
    2. S. Y. Kim,
    3. A. M. Wiegand,
    4. S. E. Palmer,
    5. S. J. Gange,
    6. L. Cranmer,
    7. A. O’Shea,
    8. M. Callender,
    9. A. Spivak,
    10. T. Brennan,
    11. et al
    . 2009. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 106: 9403–9408.
    OpenUrlAbstract/FREE Full Text
    1. Gandhi R. T.,
    2. L. Zheng,
    3. R. J. Bosch,
    4. E. S. Chan,
    5. D. M. Margolis,
    6. S. Read,
    7. B. Kallungal,
    8. S. Palmer,
    9. K. Medvik,
    10. M. M. Lederman,
    11. et al,
    12. AIDS Clinical Trials Group A5244 team
    . 2010. The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med. 7: e1000321.
    OpenUrlCrossRefPubMed
  78. ↵
    1. McMahon D.,
    2. J. Jones,
    3. A. Wiegand,
    4. S. J. Gange,
    5. M. Kearney,
    6. S. Palmer,
    7. S. McNulty,
    8. J. A. Metcalf,
    9. E. Acosta,
    10. C. Rehm,
    11. et al
    . 2010. Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy. Clin. Infect. Dis. 50: 912–919.
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Joos B.,
    2. M. Fischer,
    3. H. Kuster,
    4. S. K. Pillai,
    5. J. K. Wong,
    6. J. Böni,
    7. B. Hirschel,
    8. R. Weber,
    9. A. Trkola,
    10. H. F. Günthard,
    11. Swiss HIV Cohort Study
    . 2008. HIV rebounds from latently infected cells, rather than from continuing low-level replication. Proc. Natl. Acad. Sci. USA 105: 16725–16730.
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Hill A. L.,
    2. D. I. Rosenbloom,
    3. F. Fu,
    4. M. A. Nowak,
    5. R. F. Siliciano
    . 2014. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc. Natl. Acad. Sci. USA 111: 13475–13480.
    OpenUrlAbstract/FREE Full Text
  81. ↵
    1. Eriksson S.,
    2. E. H. Graf,
    3. V. Dahl,
    4. M. C. Strain,
    5. S. A. Yukl,
    6. E. S. Lysenko,
    7. R. J. Bosch,
    8. J. Lai,
    9. S. Chioma,
    10. F. Emad,
    11. et al
    . 2013. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 9: e1003174.
    OpenUrlCrossRefPubMed
  82. ↵
    1. Hütter G.,
    2. D. Nowak,
    3. M. Mossner,
    4. S. Ganepola,
    5. A. Müssig,
    6. K. Allers,
    7. T. Schneider,
    8. J. Hofmann,
    9. C. Kücherer,
    10. O. Blau,
    11. et al
    . 2009. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360: 692–698.
    OpenUrlCrossRefPubMed
  83. ↵
    1. Henrich T. J.,
    2. Z. Hu,
    3. J. Z. Li,
    4. G. Sciaranghella,
    5. M. P. Busch,
    6. S. M. Keating,
    7. S. Gallien,
    8. N. H. Lin,
    9. F. F. Giguel,
    10. L. Lavoie,
    11. et al
    . 2013. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J. Infect. Dis. 207: 1694–1702.
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Henrich T. J.,
    2. E. Hanhauser,
    3. F. M. Marty,
    4. M. N. Sirignano,
    5. S. Keating,
    6. T. H. Lee,
    7. Y. P. Robles,
    8. B. T. Davis,
    9. J. Z. Li,
    10. A. Heisey,
    11. et al
    . 2014. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161: 319–327.
    OpenUrlCrossRefPubMed
  85. ↵
    1. Gartner S.,
    2. P. Markovits,
    3. D. M. Markovitz,
    4. M. H. Kaplan,
    5. R. C. Gallo,
    6. M. Popovic
    . 1986. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233: 215–219.
    OpenUrlAbstract/FREE Full Text
    1. Koenig S.,
    2. H. E. Gendelman,
    3. J. M. Orenstein,
    4. M. C. Dal Canto,
    5. G. H. Pezeshkpour,
    6. M. Yungbluth,
    7. F. Janotta,
    8. A. Aksamit,
    9. M. A. Martin,
    10. A. S. Fauci
    . 1986. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233: 1089–1093.
    OpenUrlAbstract/FREE Full Text
    1. Igarashi T.,
    2. C. R. Brown,
    3. Y. Endo,
    4. A. Buckler-White,
    5. R. Plishka,
    6. N. Bischofberger,
    7. V. Hirsch,
    8. M. A. Martin
    . 2001. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): implications for HIV-1 infections of humans. Proc. Natl. Acad. Sci. USA 98: 658–663.
    OpenUrlAbstract/FREE Full Text
    1. Babas T.,
    2. D. Muñoz,
    3. J. L. Mankowski,
    4. P. M. Tarwater,
    5. J. E. Clements,
    6. M. C. Zink
    . 2003. Role of microglial cells in selective replication of simian immunodeficiency virus genotypes in the brain. J. Virol. 77: 208–216.
    OpenUrlAbstract/FREE Full Text
    1. González-Scarano F.,
    2. J. Martín-García
    . 2005. The neuropathogenesis of AIDS. Nat. Rev. Immunol. 5: 69–81.
    OpenUrlCrossRefPubMed
    1. Peng G.,
    2. T. Greenwell-Wild,
    3. S. Nares,
    4. W. Jin,
    5. K. J. Lei,
    6. Z. G. Rangel,
    7. P. J. Munson,
    8. S. M. Wahl
    . 2007. Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110: 393–400.
    OpenUrlAbstract/FREE Full Text
    1. Arfi V.,
    2. L. Rivière,
    3. L. Jarrosson-Wuillème,
    4. C. Goujon,
    5. D. Rigal,
    6. J. L. Darlix,
    7. A. Cimarelli
    . 2008. Characterization of the early steps of infection of primary blood monocytes by human immunodeficiency virus type 1. J. Virol. 82: 6557–6565.
    OpenUrlAbstract/FREE Full Text
    1. Schnell G.,
    2. S. Spudich,
    3. P. Harrington,
    4. R. W. Price,
    5. R. Swanstrom
    . 2009. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia. PLoS Pathog. 5: e1000395.
    OpenUrlCrossRefPubMed
    1. Redel L.,
    2. V. Le Douce,
    3. T. Cherrier,
    4. C. Marban,
    5. A. Janossy,
    6. D. Aunis,
    7. C. Van Lint,
    8. O. Rohr,
    9. C. Schwartz
    . 2010. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. J. Leukoc. Biol. 87: 575–588.
    OpenUrlAbstract/FREE Full Text
    1. Schnell G.,
    2. S. Joseph,
    3. S. Spudich,
    4. R. W. Price,
    5. R. Swanstrom
    . 2011. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 7: e1002286.
    OpenUrlCrossRefPubMed
    1. Cribbs S. K.,
    2. J. Lennox,
    3. A. M. Caliendo,
    4. L. A. Brown,
    5. D. M. Guidot
    . 2015. Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages. AIDS Res. Hum. Retroviruses 31: 64–70.
    OpenUrlCrossRefPubMed
  86. ↵
    1. Honeycutt J. B.,
    2. A. Wahl,
    3. C. Baker,
    4. R. A. Spagnuolo,
    5. J. Foster,
    6. O. Zakharova,
    7. S. Wietgrefe,
    8. C. Caro-Vegas,
    9. V. Madden,
    10. G. Sharpe,
    11. et al
    . 2016. Macrophages sustain HIV replication in vivo independently of T cells. J. Clin. Invest. 126: 1353–1366.
    OpenUrlCrossRefPubMed
  87. ↵
    1. Eisele E.,
    2. R. F. Siliciano
    . 2012. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37: 377–388.
    OpenUrlCrossRefPubMed
  88. ↵
    1. Sahu G. K.,
    2. K. Lee,
    3. J. Ji,
    4. V. Braciale,
    5. S. Baron,
    6. M. W. Cloyd
    . 2006. A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ T-lymphocytes. Virology 355: 127–137.
    OpenUrlCrossRefPubMed
    1. Bosque A.,
    2. V. Planelles
    . 2009. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113: 58–65.
    OpenUrlAbstract/FREE Full Text
    1. Yang H. C.,
    2. S. Xing,
    3. L. Shan,
    4. K. O’Connell,
    5. J. Dinoso,
    6. A. Shen,
    7. Y. Zhou,
    8. C. K. Shrum,
    9. Y. Han,
    10. J. O. Liu,
    11. et al
    . 2009. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J. Clin. Invest. 119: 3473–3486.
    OpenUrlCrossRefPubMed
    1. Tyagi M.,
    2. R. J. Pearson,
    3. J. Karn
    . 2010. Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J. Virol. 84: 6425–6437.
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Saleh S.,
    2. A. Solomon,
    3. F. Wightman,
    4. M. Xhilaga,
    5. P. U. Cameron,
    6. S. R. Lewin
    . 2007. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110: 4161–4164.
    OpenUrlAbstract/FREE Full Text
  90. ↵
    1. Kordelas L.,
    2. J. Verheyen,
    3. D. W. Beelen,
    4. P. A. Horn,
    5. A. Heinold,
    6. R. Kaiser,
    7. R. Trenschel,
    8. D. Schadendorf,
    9. U. Dittmer,
    10. S. Esser,
    11. Essen HIV AlloSCT Group
    . 2014. Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N. Engl. J. Med. 371: 880–882.
    OpenUrlCrossRef
  91. ↵
    1. Siliciano J. D.,
    2. R. F. Siliciano
    . 2005. Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol. Biol. 304: 3–15.
    OpenUrlCrossRefPubMed
    1. Laird G. M.,
    2. E. E. Eisele,
    3. S. A. Rabi,
    4. J. Lai,
    5. S. Chioma,
    6. J. N. Blankson,
    7. J. D. Siliciano,
    8. R. F. Siliciano
    . 2013. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 9: e1003398.
    OpenUrlCrossRefPubMed
  92. ↵
    1. Laird G. M.,
    2. D. I. Rosenbloom,
    3. J. Lai,
    4. R. F. Siliciano,
    5. J. D. Siliciano
    . 2016. Measuring the frequency of latent HIV-1 in resting CD4+ T cells using a limiting dilution coculture assay. Methods Mol. Biol. 1354: 239–253.
    OpenUrlCrossRefPubMed
  93. ↵
    1. Chun T. W.,
    2. D. C. Nickle,
    3. J. S. Justement,
    4. D. Large,
    5. A. Semerjian,
    6. M. E. Curlin,
    7. M. A. O’Shea,
    8. C. W. Hallahan,
    9. M. Daucher,
    10. D. J. Ward,
    11. et al
    . 2005. HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J. Clin. Invest. 115: 3250–3255.
    OpenUrlCrossRefPubMed
  94. ↵
    1. Fletcher C. V.,
    2. K. Staskus,
    3. S. W. Wietgrefe,
    4. M. Rothenberger,
    5. C. Reilly,
    6. J. G. Chipman,
    7. G. J. Beilman,
    8. A. Khoruts,
    9. A. Thorkelson,
    10. T. E. Schmidt,
    11. et al
    . 2014. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. USA 111: 2307–2312.
    OpenUrlAbstract/FREE Full Text
  95. ↵
    1. Lorenzo-Redondo R.,
    2. H. R. Fryer,
    3. T. Bedford,
    4. E. Y. Kim,
    5. J. Archer,
    6. S. L. Kosakovsky Pond,
    7. Y. S. Chung,
    8. S. Penugonda,
    9. J. G. Chipman,
    10. C. V. Fletcher,
    11. et al
    . 2016. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530: 51–56.
    OpenUrlCrossRefPubMed
  96. ↵
    1. Martin A. R.,
    2. R. F. Siliciano
    . 2016. Progress toward HIV eradication: case reports, current efforts, and the challenges associated with cure. Annu. Rev. Med. 67: 215–228.
    OpenUrlCrossRefPubMed
  97. ↵
    1. Shankarappa R.,
    2. J. B. Margolick,
    3. S. J. Gange,
    4. A. G. Rodrigo,
    5. D. Upchurch,
    6. H. Farzadegan,
    7. P. Gupta,
    8. C. R. Rinaldo,
    9. G. H. Learn,
    10. X. He,
    11. et al
    . 1999. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J. Virol. 73: 10489–10502.
    OpenUrlAbstract/FREE Full Text
  98. ↵
    1. Mansky L. M.,
    2. H. M. Temin
    . 1995. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69: 5087–5094.
    OpenUrlAbstract/FREE Full Text
  99. ↵
    1. Sheehy A. M.,
    2. N. C. Gaddis,
    3. J. D. Choi,
    4. M. H. Malim
    . 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418: 646–650.
    OpenUrlCrossRefPubMed
    1. Yu Q.,
    2. R. König,
    3. S. Pillai,
    4. K. Chiles,
    5. M. Kearney,
    6. S. Palmer,
    7. D. Richman,
    8. J. M. Coffin,
    9. N. R. Landau
    . 2004. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 11: 435–442.
    OpenUrlCrossRefPubMed
    1. Kieffer T. L.,
    2. P. Kwon,
    3. R. E. Nettles,
    4. Y. Han,
    5. S. C. Ray,
    6. R. F. Siliciano
    . 2005. G→A hypermutation in protease and reverse transcriptase regions of human immunodeficiency virus type 1 residing in resting CD4+ T cells in vivo. J. Virol. 79: 1975–1980.
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Cuevas J. M.,
    2. R. Geller,
    3. R. Garijo,
    4. J. López-Aldeguer,
    5. R. Sanjuán
    . 2015. Extremely high mutation rate of HIV-1 in vivo. PLoS Biol. 13: e1002251.
    OpenUrlCrossRefPubMed
  101. ↵
    1. Mens H.,
    2. A. G. Pedersen,
    3. L. B. Jørgensen,
    4. S. Hue,
    5. Y. Yang,
    6. J. Gerstoft,
    7. T. L. Katzenstein
    . 2007. Investigating signs of recent evolution in the pool of proviral HIV type 1 DNA during years of successful HAART. AIDS Res. Hum. Retroviruses 23: 107–115.
    OpenUrlCrossRefPubMed
  102. ↵
    1. Wagner T. A.,
    2. J. L. McKernan,
    3. N. H. Tobin,
    4. K. A. Tapia,
    5. J. I. Mullins,
    6. L. M. Frenkel
    . 2013. An increasing proportion of monotypic HIV-1 DNA sequences during antiretroviral treatment suggests proliferation of HIV-infected cells. J. Virol. 87: 1770–1778.
    OpenUrlAbstract/FREE Full Text
  103. ↵
    1. Blankson J. N.,
    2. D. Finzi,
    3. T. C. Pierson,
    4. B. P. Sabundayo,
    5. K. Chadwick,
    6. J. B. Margolick,
    7. T. C. Quinn,
    8. R. F. Siliciano
    . 2000. Biphasic decay of latently infected CD4+ T cells in acute human immunodeficiency virus type 1 infection. J. Infect. Dis. 182: 1636–1642.
    OpenUrlAbstract/FREE Full Text
  104. ↵
    1. Larder B. A.,
    2. G. Darby,
    3. D. D. Richman
    . 1989. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243: 1731–1734.
    OpenUrlAbstract/FREE Full Text
    1. Coffin J. M.
    1995. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267: 483–489.
    OpenUrlAbstract/FREE Full Text
    1. Günthard H. F.,
    2. J. K. Wong,
    3. C. C. Ignacio,
    4. J. C. Guatelli,
    5. N. L. Riggs,
    6. D. V. Havlir,
    7. D. D. Richman
    . 1998. Human immunodeficiency virus replication and genotypic resistance in blood and lymph nodes after a year of potent antiretroviral therapy. J. Virol. 72: 2422–2428.
    OpenUrlAbstract/FREE Full Text
    1. Shafer R. W.
    2002. Genotypic testing for human immunodeficiency virus type 1 drug resistance. Clin. Microbiol. Rev. 15: 247–277.
    OpenUrlAbstract/FREE Full Text
  105. ↵
    1. Clavel F.,
    2. A. J. Hance
    . 2004. HIV drug resistance. N. Engl. J. Med. 350: 1023–1035.
    OpenUrlCrossRefPubMed
  106. ↵
    1. Theys K.,
    2. J. Snoeck,
    3. J. Vercauteren,
    4. A. B. Abecasis,
    5. A. M. Vandamme,
    6. R. J. Camacho,
    7. Portuguese HIV-1 Resistance Study Group
    . 2013. Decreasing population selection rates of resistance mutation K65R over time in HIV-1 patients receiving combination therapy including tenofovir. J. Antimicrob. Chemother. 68: 419–423.
    OpenUrlAbstract/FREE Full Text
    1. Charpentier C.,
    2. S. Lambert-Niclot,
    3. B. Visseaux,
    4. L. Morand-Joubert,
    5. A. Storto,
    6. L. Larrouy,
    7. R. Landman,
    8. V. Calvez,
    9. A. G. Marcelin,
    10. D. Descamps
    . 2013. Evolution of the K65R, K103N and M184V/I reverse transcriptase mutations in HIV-1-infected patients experiencing virological failure between 2005 and 2010. J. Antimicrob. Chemother. 68: 2197–2198.
    OpenUrlAbstract/FREE Full Text
  107. ↵
    1. Bontell I.,
    2. A. Häggblom,
    3. G. Bratt,
    4. J. Albert,
    5. A. Sönnerborg
    . 2013. Trends in antiretroviral therapy and prevalence of HIV drug resistance mutations in Sweden 1997–2011. PLoS One 8: e59337.
    OpenUrlCrossRefPubMed
  108. ↵
    1. Nakagawa F.,
    2. M. May,
    3. A. Phillips
    . 2013. Life expectancy living with HIV: recent estimates and future implications. Curr. Opin. Infect. Dis. 26: 17–25.
    OpenUrlCrossRefPubMed
    1. van Sighem A. I.,
    2. L. A. Gras,
    3. P. Reiss,
    4. K. Brinkman,
    5. F. de Wolf,
    6. ATHENA national observational cohort study
    . 2010. Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. AIDS 24: 1527–1535.
    OpenUrlCrossRefPubMed
    1. Mills E. J.,
    2. C. Bakanda,
    3. J. Birungi,
    4. K. Chan,
    5. N. Ford,
    6. C. L. Cooper,
    7. J. B. Nachega,
    8. M. Dybul,
    9. R. S. Hogg
    . 2011. Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: a cohort analysis from Uganda. Ann. Intern. Med. 155: 209–216.
    OpenUrlCrossRefPubMed
  109. ↵
    1. Johnson L. F.,
    2. J. Mossong,
    3. R. E. Dorrington,
    4. M. Schomaker,
    5. C. J. Hoffmann,
    6. O. Keiser,
    7. M. P. Fox,
    8. R. Wood,
    9. H. Prozesky,
    10. J. Giddy,
    11. et al,
    12. International Epidemiologic Databases to Evaluate AIDS Southern Africa Collaboration
    . 2013. Life expectancies of South African adults starting antiretroviral treatment: collaborative analysis of cohort studies. PLoS Med. 10: e1001418.
    OpenUrlCrossRefPubMed
  110. ↵
    1. Hammarlund E.,
    2. M. W. Lewis,
    3. S. G. Hansen,
    4. L. I. Strelow,
    5. J. A. Nelson,
    6. G. J. Sexton,
    7. J. M. Hanifin,
    8. M. K. Slifka
    . 2003. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9: 1131–1137.
    OpenUrlCrossRefPubMed
  111. ↵
    1. Takaki A.,
    2. M. Wiese,
    3. G. Maertens,
    4. E. Depla,
    5. U. Seifert,
    6. A. Liebetrau,
    7. J. L. Miller,
    8. M. P. Manns,
    9. B. Rehermann
    . 2000. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat. Med. 6: 578–582.
    OpenUrlCrossRefPubMed
  112. ↵
    1. Michie C. A.,
    2. A. McLean,
    3. C. Alcock,
    4. P. C. Beverley
    . 1992. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360: 264–265.
    OpenUrlCrossRefPubMed
  113. ↵
    1. Mclean A. R.,
    2. C. A. Michie
    . 1995. In vivo estimates of division and death rates of human T lymphocytes. Proc. Natl. Acad. Sci. USA 92: 3707–3711.
    OpenUrlAbstract/FREE Full Text
  114. ↵
    1. Hellerstein M. K.,
    2. R. A. Hoh,
    3. M. B. Hanley,
    4. D. Cesar,
    5. D. Lee,
    6. R. A. Neese,
    7. J. M. McCune
    . 2003. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Invest. 112: 956–966.
    OpenUrlCrossRefPubMed
  115. ↵
    1. Vrisekoop N.,
    2. I. den Braber,
    3. A. B. de Boer,
    4. A. F. Ruiter,
    5. M. T. Ackermans,
    6. S. N. van der Crabben,
    7. E. H. Schrijver,
    8. G. Spierenburg,
    9. H. P. Sauerwein,
    10. M. D. Hazenberg,
    11. et al
    . 2008. Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc. Natl. Acad. Sci. USA 105: 6115–6120.
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. De Boer R. J.,
    2. A. S. Perelson
    . 2013. Quantifying T lymphocyte turnover. J. Theor. Biol. 327: 45–87.
    OpenUrlCrossRefPubMed
  117. ↵
    1. Jowett J. B.,
    2. V. Planelles,
    3. B. Poon,
    4. N. P. Shah,
    5. M. L. Chen,
    6. I. S. Chen
    . 1995. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J. Virol. 69: 6304–6313.
    OpenUrlAbstract/FREE Full Text
  118. ↵
    1. Gérard F. C.,
    2. R. Yang,
    3. B. Romani,
    4. A. Poisson,
    5. J. P. Belzile,
    6. N. Rougeau,
    7. E. A. Cohen
    . 2014. Defining the interactions and role of DCAF1/VPRBP in the DDB1-cullin4A E3 ubiquitin ligase complex engaged by HIV-1 Vpr to induce a G2 cell cycle arrest. PLoS One 9: e89195.
    OpenUrlCrossRefPubMed
  119. ↵
    1. Romani B.,
    2. N. Shaykh Baygloo,
    3. M. R. Aghasadeghi,
    4. E. Allahbakhshi
    . 2015. HIV-1 Vpr protein enhances proteasomal degradation of MCM10 DNA replication factor through the Cul4-DDB1[VprBP] E3 ubiquitin ligase to induce G2/M cell cycle arrest. J. Biol. Chem. 290: 17380–17389.
    OpenUrlAbstract/FREE Full Text
  120. ↵
    1. Bosque A.,
    2. M. Famiglietti,
    3. A. S. Weyrich,
    4. C. Goulston,
    5. V. Planelles
    . 2011. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog. 7: e1002288.
    OpenUrlCrossRefPubMed
  121. ↵
    1. Maldarelli F.,
    2. X. Wu,
    3. L. Su,
    4. F. R. Simonetti,
    5. W. Shao,
    6. S. Hill,
    7. J. Spindler,
    8. A. L. Ferris,
    9. J. W. Mellors,
    10. M. F. Kearney,
    11. et al
    . 2014. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345: 179–183.
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Wagner T. A.,
    2. S. McLaughlin,
    3. K. Garg,
    4. C. Y. Cheung,
    5. B. B. Larsen,
    6. S. Styrchak,
    7. H. C. Huang,
    8. P. T. Edlefsen,
    9. J. I. Mullins,
    10. L. M. Frenkel
    . 2014. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345: 570–573.
    OpenUrlAbstract/FREE Full Text
  123. ↵
    1. Simonetti F. R.,
    2. M. D. Sobolewski,
    3. E. Fyne,
    4. W. Shao,
    5. J. Spindler,
    6. J. Hattori,
    7. E. M. Anderson,
    8. S. A. Watters,
    9. S. Hill,
    10. X. Wu,
    11. et al
    . 2016. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc. Natl. Acad. Sci. USA 113: 1883–1888.
    OpenUrlAbstract/FREE Full Text
  124. ↵
    1. Swain S. L.,
    2. H. Hu,
    3. G. Huston
    . 1999. Class II-independent generation of CD4 memory T cells from effectors. Science 286: 1381–1383.
    OpenUrlAbstract/FREE Full Text
  125. ↵
    1. Kassiotis G.,
    2. S. Garcia,
    3. E. Simpson,
    4. B. Stockinger
    . 2002. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat. Immunol. 3: 244–250.
    OpenUrlCrossRefPubMed
  126. ↵
    1. Brenchley J. M.,
    2. L. E. Ruff,
    3. J. P. Casazza,
    4. R. A. Koup,
    5. D. A. Price,
    6. D. C. Douek
    . 2006. Preferential infection shortens the life span of human immunodeficiency virus-specific CD4+ T cells in vivo. J. Virol. 80: 6801–6809.
    OpenUrlAbstract/FREE Full Text
  127. ↵
    1. Su L. F.,
    2. B. A. Kidd,
    3. A. Han,
    4. J. J. Kotzin,
    5. M. M. Davis
    . 2013. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38: 373–383.
    OpenUrlCrossRefPubMed
  128. ↵
    1. Surh C. D.,
    2. J. Sprent
    . 2008. Homeostasis of naive and memory T cells. Immunity 29: 848–862.
    OpenUrlCrossRefPubMed
  129. ↵
    1. Maeurer M. J.,
    2. M. T. Lotze
    . 1998. Interleukin-7 (IL-7) knockout mice. Implications for lymphopoiesis and organ-specific immunity. Int. Rev. Immunol. 16: 309–322.
    OpenUrlCrossRefPubMed
  130. ↵
    1. Purton J. F.,
    2. J. T. Tan,
    3. M. P. Rubinstein,
    4. D. M. Kim,
    5. J. Sprent,
    6. C. D. Surh
    . 2007. Antiviral CD4+ memory T cells are IL-15 dependent. J. Exp. Med. 204: 951–961.
    OpenUrlAbstract/FREE Full Text
  131. ↵
    1. Scripture-Adams D. D.,
    2. D. G. Brooks,
    3. Y. D. Korin,
    4. J. A. Zack
    . 2002. Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype. J. Virol. 76: 13077–13082.
    OpenUrlAbstract/FREE Full Text
  132. ↵
    1. Wang F. X.,
    2. Y. Xu,
    3. J. Sullivan,
    4. E. Souder,
    5. E. G. Argyris,
    6. E. A. Acheampong,
    7. J. Fisher,
    8. M. Sierra,
    9. M. M. Thomson,
    10. R. Najera,
    11. et al
    . 2005. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J. Clin. Invest. 115: 128–137.
    OpenUrlCrossRefPubMed
  133. ↵
    1. Vandergeeten C.,
    2. R. Fromentin,
    3. S. DaFonseca,
    4. M. B. Lawani,
    5. I. Sereti,
    6. M. M. Lederman,
    7. M. Ramgopal,
    8. J. P. Routy,
    9. R. P. Sékaly,
    10. N. Chomont
    . 2013. Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 121: 4321–4329.
    OpenUrlAbstract/FREE Full Text
  134. ↵
    1. Katlama C.,
    2. S. Lambert-Niclot,
    3. L. Assoumou,
    4. L. Papagno,
    5. F. Lecardonnel,
    6. R. Zoorob,
    7. G. Tambussi,
    8. B. Clotet,
    9. M. Youle,
    10. C. J. Achenbach,
    11. et al,
    12. EraMune-01 study team
    . 2016. Treatment intensification followed by interleukin-7 reactivates HIV without reducing total HIV DNA: a randomized trial. AIDS 30: 221–230.
    OpenUrlCrossRefPubMed
  135. ↵
    1. Sallusto F.,
    2. D. Lenig,
    3. R. Förster,
    4. M. Lipp,
    5. A. Lanzavecchia
    . 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708–712.
    OpenUrlCrossRefPubMed
  136. ↵
    1. Riou C.,
    2. B. Yassine-Diab,
    3. J. Van grevenynghe,
    4. R. Somogyi,
    5. L. D. Greller,
    6. D. Gagnon,
    7. S. Gimmig,
    8. P. Wilkinson,
    9. Y. Shi,
    10. M. J. Cameron,
    11. et al
    . 2007. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med. 204: 79–91.
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Soriano-Sarabia N.,
    2. R. E. Bateson,
    3. N. P. Dahl,
    4. A. M. Crooks,
    5. J. D. Kuruc,
    6. D. M. Margolis,
    7. N. M. Archin
    . 2014. Quantitation of replication-competent HIV-1 in populations of resting CD4+ T cells. J. Virol. 88: 14070–14077.
    OpenUrlAbstract/FREE Full Text
  138. ↵
    1. Gattinoni L.,
    2. E. Lugli,
    3. Y. Ji,
    4. Z. Pos,
    5. C. M. Paulos,
    6. M. F. Quigley,
    7. J. R. Almeida,
    8. E. Gostick,
    9. Z. Yu,
    10. C. Carpenito,
    11. et al
    . 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17: 1290–1297.
    OpenUrlCrossRefPubMed
  139. ↵
    1. Buzon M. J.,
    2. H. Sun,
    3. C. Li,
    4. A. Shaw,
    5. K. Seiss,
    6. Z. Ouyang,
    7. E. Martin-Gayo,
    8. J. Leng,
    9. T. J. Henrich,
    10. J. Z. Li,
    11. et al
    . 2014. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat. Med. 20: 139–142.
    OpenUrlCrossRefPubMed
  140. ↵
    1. Ho Y. C.,
    2. L. Shan,
    3. N. N. Hosmane,
    4. J. Wang,
    5. S. B. Laskey,
    6. D. I. Rosenbloom,
    7. J. Lai,
    8. J. N. Blankson,
    9. J. D. Siliciano,
    10. R. F. Siliciano
    . 2013. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155: 540–551.
    OpenUrlCrossRefPubMed
  141. ↵
    1. Reinhardt R. L.,
    2. A. Khoruts,
    3. R. Merica,
    4. T. Zell,
    5. M. K. Jenkins
    . 2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410: 101–105.
    OpenUrlCrossRefPubMed
  142. ↵
    1. Thome J. J.,
    2. N. Yudanin,
    3. Y. Ohmura,
    4. M. Kubota,
    5. B. Grinshpun,
    6. T. Sathaliyawala,
    7. T. Kato,
    8. H. Lerner,
    9. Y. Shen,
    10. D. L. Farber
    . 2014. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159: 814–828.
    OpenUrlCrossRefPubMed
  143. ↵
    1. Farber D. L.,
    2. N. A. Yudanin,
    3. N. P. Restifo
    . 2014. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14: 24–35.
    OpenUrlCrossRefPubMed
  144. ↵
    1. Hong J. J.,
    2. P. K. Amancha,
    3. K. Rogers,
    4. A. A. Ansari,
    5. F. Villinger
    . 2012. Spatial alterations between CD4+ T follicular helper, B, and CD8+ T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. J. Immunol. 188: 3247–3256.
    OpenUrlAbstract/FREE Full Text
    1. Perreau M.,
    2. A. L. Savoye,
    3. E. De Crignis,
    4. J. M. Corpataux,
    5. R. Cubas,
    6. E. K. Haddad,
    7. L. De Leval,
    8. C. Graziosi,
    9. G. Pantaleo
    . 2013. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 210: 143–156.
    OpenUrlAbstract/FREE Full Text
    1. Connick E.,
    2. J. M. Folkvord,
    3. K. T. Lind,
    4. E. G. Rakasz,
    5. B. Miles,
    6. N. A. Wilson,
    7. M. L. Santiago,
    8. K. Schmitt,
    9. E. B. Stephens,
    10. H. O. Kim,
    11. et al
    . 2014. Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of rhesus macaques is linked to disease stage and inversely related to localization of virus-specific CTL. J. Immunol. 193: 5613–5625.
    OpenUrlAbstract/FREE Full Text
  145. ↵
    1. Fukazawa Y.,
    2. R. Lum,
    3. A. A. Okoye,
    4. H. Park,
    5. K. Matsuda,
    6. J. Y. Bae,
    7. S. I. Hagen,
    8. R. Shoemaker,
    9. C. Deleage,
    10. C. Lucero,
    11. et al
    . 2015. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat. Med. 21: 132–139.
    OpenUrlCrossRefPubMed
  146. ↵
    1. Shan L.,
    2. K. Deng,
    3. N. S. Shroff,
    4. C. M. Durand,
    5. S. A. Rabi,
    6. H. C. Yang,
    7. H. Zhang,
    8. J. B. Margolick,
    9. J. N. Blankson,
    10. R. F. Siliciano
    . 2012. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36: 491–501.
    OpenUrlCrossRefPubMed
  147. ↵
    1. Clark R. A.
    2015. Resident memory T cells in human health and disease. Sci. Transl. Med. 7: 269rv1.
    OpenUrlFREE Full Text
  148. ↵
    1. Thome J. J.,
    2. D. L. Farber
    . 2015. Emerging concepts in tissue-resident T cells: lessons from humans. Trends Immunol. 36: 428–435.
    OpenUrlCrossRefPubMed
  149. ↵
    1. Purwar R.,
    2. J. Campbell,
    3. G. Murphy,
    4. W. G. Richards,
    5. R. A. Clark,
    6. T. S. Kupper
    . 2011. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS One 6: e16245.
    OpenUrlCrossRefPubMed
  150. ↵
    1. Chun T. W.,
    2. D. C. Nickle,
    3. J. S. Justement,
    4. J. H. Meyers,
    5. G. Roby,
    6. C. W. Hallahan,
    7. S. Kottilil,
    8. S. Moir,
    9. J. M. Mican,
    10. J. I. Mullins,
    11. et al
    . 2008. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J. Infect. Dis. 197: 714–720.
    OpenUrlAbstract/FREE Full Text
  151. ↵
    1. Lerner P.,
    2. M. Guadalupe,
    3. R. Donovan,
    4. J. Hung,
    5. J. Flamm,
    6. T. Prindiville,
    7. S. Sankaran-Walters,
    8. M. Syvanen,
    9. J. K. Wong,
    10. M. D. George,
    11. S. Dandekar
    . 2011. The gut mucosal viral reservoir in HIV-infected patients is not the major source of rebound plasma viremia following interruption of highly active antiretroviral therapy. J. Virol. 85: 4772–4782.
    OpenUrlAbstract/FREE Full Text
  152. ↵
    1. Anderson J. A.,
    2. N. M. Archin,
    3. W. Ince,
    4. D. Parker,
    5. A. Wiegand,
    6. J. M. Coffin,
    7. J. Kuruc,
    8. J. Eron,
    9. R. Swanstrom,
    10. D. M. Margolis
    . 2011. Clonal sequences recovered from plasma from patients with residual HIV-1 viremia and on intensified antiretroviral therapy are identical to replicating viral RNAs recovered from circulating resting CD4+ T cells. J. Virol. 85: 5220–5223.
    OpenUrlAbstract/FREE Full Text
  153. ↵
    1. Schröder A. R.,
    2. P. Shinn,
    3. H. Chen,
    4. C. Berry,
    5. J. R. Ecker,
    6. F. Bushman
    . 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521–529.
    OpenUrlCrossRefPubMed
  154. ↵
    1. Han Y.,
    2. K. Lassen,
    3. D. Monie,
    4. A. R. Sedaghat,
    5. S. Shimoji,
    6. X. Liu,
    7. T. C. Pierson,
    8. J. B. Margolick,
    9. R. F. Siliciano,
    10. J. D. Siliciano
    . 2004. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78: 6122–6133.
    OpenUrlAbstract/FREE Full Text
  155. ↵
    1. Berry C. C.,
    2. N. A. Gillet,
    3. A. Melamed,
    4. N. Gormley,
    5. C. R. Bangham,
    6. F. D. Bushman
    . 2012. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics 28: 755–762.
    OpenUrlAbstract/FREE Full Text
  156. ↵
    1. Cohn L. B.,
    2. I. T. Silva,
    3. T. Y. Oliveira,
    4. R. A. Rosales,
    5. E. H. Parrish,
    6. G. H. Learn,
    7. B. H. Hahn,
    8. J. L. Czartoski,
    9. M. J. McElrath,
    10. C. Lehmann,
    11. et al
    . 2015. HIV-1 integration landscape during latent and active infection. Cell 160: 420–432.
    OpenUrlCrossRefPubMed
  157. ↵
    1. Ikeda T.,
    2. J. Shibata,
    3. K. Yoshimura,
    4. A. Koito,
    5. S. Matsushita
    . 2007. Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J. Infect. Dis. 195: 716–725.
    OpenUrlAbstract/FREE Full Text
  158. ↵
    1. Imamichi H.,
    2. V. Natarajan,
    3. J. W. Adelsberger,
    4. C. A. Rehm,
    5. R. A. Lempicki,
    6. B. Das,
    7. A. Hazen,
    8. T. Imamichi,
    9. H. C. Lane
    . 2014. Lifespan of effector memory CD4+ T cells determined by replication-incompetent integrated HIV-1 provirus. AIDS 28: 1091–1099.
    OpenUrlCrossRefPubMed
  159. ↵
    1. Simonetti F. R.,
    2. M. D. Sobolewski,
    3. E. Fyne,
    4. W. Shao,
    5. J. Spindler,
    6. J. Hattori,
    7. E. M. Anderson,
    8. S. A. Watters,
    9. S. Hill,
    10. X. Wu,
    11. D. Wells,
    12. et al
    . 2016. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc. Natl. Acad. Sci. 113: 1883–1888.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

The Journal of Immunology: 197 (2)
The Journal of Immunology
Vol. 197, Issue 2
15 Jul 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Advertising (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence
Alexandra J. Murray, Kyungyoon J. Kwon, Donna L. Farber, Robert F. Siliciano
The Journal of Immunology July 15, 2016, 197 (2) 407-417; DOI: 10.4049/jimmunol.1600343

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence
Alexandra J. Murray, Kyungyoon J. Kwon, Donna L. Farber, Robert F. Siliciano
The Journal of Immunology July 15, 2016, 197 (2) 407-417; DOI: 10.4049/jimmunol.1600343
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Abstract
    • Introduction
    • Disclosures
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Dicer and PKR as Novel Regulators of Embryonic Stem Cell Fate and Antiviral Innate Immunity
  • Innate and Adaptive Immunity in Noninfectious Granulomatous Lung Disease
  • Innate Immune Memory and the Host Response to Infection
Show more BRIEF REVIEWS

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606