Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

CD39+Foxp3+ Regulatory T Cells Suppress Pathogenic Th17 Cells and Are Impaired in Multiple Sclerosis

Jean M. Fletcher, Roisin Lonergan, Lisa Costelloe, Katie Kinsella, Barry Moran, Cliona O'Farrelly, Niall Tubridy and Kingston H. G. Mills
J Immunol December 1, 2009, 183 (11) 7602-7610; DOI: https://doi.org/10.4049/jimmunol.0901881
Jean M. Fletcher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roisin Lonergan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa Costelloe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katie Kinsella
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barry Moran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cliona O'Farrelly
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Niall Tubridy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kingston H. G. Mills
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Despite the fact that CD4+CD25+Foxp3+ regulatory T cells (Treg cells) play a central role in maintaining self-tolerance and that IL-17-producing CD4+ T cells (Th17 cells) are pathogenic in many autoimmune diseases, evidence to date has indicated that Th17 cells are resistant to suppression by human Foxp3+ Treg cells. It was recently demonstrated that CD39, an ectonucleotidase which hydrolyzes ATP, is expressed on a subset of human natural Treg cells. We found that although both CD4+CD25highCD39+ and CD4+CD25highCD39− T cells suppressed proliferation and IFN-γ production by responder T cells, only the CD4+CD25highCD39+, which were predominantly FoxP3+, suppressed IL-17 production, whereas CD4+CD25highCD39− T cells produced IL-17. An examination of T cells from multiple sclerosis patients revealed a normal frequency of CD4+CD25+CD127lowFoxP3+, but interestingly a deficit in the relative frequency and the suppressive function of CD4+CD25+CD127lowFoxP3+CD39+ Treg cells. The mechanism of suppression by CD39+ Treg cells appears to require cell contact and can be duplicated by adenosine, which is produced from ATP by the ectonucleotidases CD39 and CD73. Our findings suggest that CD4+CD25+Foxp3+CD39+ Treg cells play an important role in constraining pathogenic Th17 cells and their reduction in multiple sclerosis patients might lead to an inability to control IL-17 mediated autoimmune inflammation.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • ↵1 This work was supported by The Irish Health Research Board (to J.F.) and Science Foundation Ireland (to K.M.).

  • ↵2 Address correspondence and reprint requests to Prof. Kingston Mills, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland. E-mail address: kingston.mills{at}tcd.ie

  • Received June 12, 2009.
  • Accepted October 2, 2009.
  • Copyright © 2009 by The American Association of Immunologists, Inc.
View Full Text
PreviousNext
Back to top

In this issue

The Journal of Immunology: 183 (11)
The Journal of Immunology
Vol. 183, Issue 11
1 Dec 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Advertising (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
CD39+Foxp3+ Regulatory T Cells Suppress Pathogenic Th17 Cells and Are Impaired in Multiple Sclerosis
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
CD39+Foxp3+ Regulatory T Cells Suppress Pathogenic Th17 Cells and Are Impaired in Multiple Sclerosis
Jean M. Fletcher, Roisin Lonergan, Lisa Costelloe, Katie Kinsella, Barry Moran, Cliona O'Farrelly, Niall Tubridy, Kingston H. G. Mills
The Journal of Immunology December 1, 2009, 183 (11) 7602-7610; DOI: 10.4049/jimmunol.0901881

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
CD39+Foxp3+ Regulatory T Cells Suppress Pathogenic Th17 Cells and Are Impaired in Multiple Sclerosis
Jean M. Fletcher, Roisin Lonergan, Lisa Costelloe, Katie Kinsella, Barry Moran, Cliona O'Farrelly, Niall Tubridy, Kingston H. G. Mills
The Journal of Immunology December 1, 2009, 183 (11) 7602-7610; DOI: 10.4049/jimmunol.0901881
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Disclosures
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Differential Susceptibility to Staphylococcal Superantigen (SsAg)-Induced Apoptosis of CD4+ T Cells from Atopic Dermatitis Patients and Healthy Subjects: The Inhibitory Effect of IL-4 on SsAg-Induced Apoptosis
  • HIV-1 Vaccination Administered Intramuscularly Can Induce Both Systemic and Mucosal T Cell Immunity in HIV-1-Uninfected Individuals
  • Osteopontin (Eta-1) and Fibroblast Growth Factor-2 Cross-Talk in Angiogenesis
Show more CLINICAL IMMUNOLOGY

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606