Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

IFN-α Enhances Peptide Vaccine-Induced CD8+ T Cell Numbers, Effector Function, and Antitumor Activity

Andrew G. Sikora, Nina Jaffarzad, Yared Hailemichael, Alexander Gelbard, Spencer W. Stonier, Kimberly S. Schluns, Loredana Frasca, Yanyan Lou, Chengwen Liu, Helen A. Andersson, Patrick Hwu and Willem W. Overwijk
J Immunol June 15, 2009, 182 (12) 7398-7407; DOI: https://doi.org/10.4049/jimmunol.0802982
Andrew G. Sikora
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nina Jaffarzad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yared Hailemichael
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander Gelbard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Spencer W. Stonier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kimberly S. Schluns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Loredana Frasca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yanyan Lou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chengwen Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Helen A. Andersson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick Hwu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Willem W. Overwijk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Type I IFNs, including IFN-α, enhance Ag presentation and promote the expansion, survival, and effector function of CD8+ CTL during viral infection. Because these are ideal characteristics for a vaccine adjuvant, we examined the efficacy and mechanism of exogenous IFN-α as an adjuvant for antimelanoma peptide vaccination. We studied the expansion of pmel-1 transgenic CD8+ T cells specific for the gp100 melanocyte differentiation Ag after vaccination of mice with gp10025–33 peptide in IFA. IFN-α synergized with peptide vaccination in a dose-dependent manner by boosting relative and absolute numbers of gp100-specific T cells that suppressed B16 melanoma growth. IFN-α dramatically increased the accumulation of gp100-specific, IFN-γ-secreting, CD8+ T cells in the tumor through reduced apoptosis and enhanced proliferation of Ag-specific CD8+ T cells. IFN-α treatment also greatly increased the long-term maintenance of pmel-1 CD8+ T cells with an effector memory phenotype, a process that required expression of IFN-α receptor on the T cells and IL-15 in the host. These results demonstrate the efficacy of IFN-α as an adjuvant for peptide vaccination, give insight into its mechanism of action, and provide a rationale for clinical trials in which vaccination is combined with standard-of-care IFN-α therapy for melanoma.

While vaccination against tumor-expressed Ags is a rational approach to cancer therapy, the efficacy of cancer vaccines in human trials against melanoma and other cancers has been disappointing (1). A major factor hampering the development of antimelanoma vaccination is the paucity of strong, innate immune-activating vaccine adjuvants available for use in human clinical trials. One critical difference between an antiviral and an antitumor immune response is the presence in the former of molecules that alert the immune system to pathogen invasion, such as ligands for the family of TLRs. The activation of innate immunity also stimulates a robust adaptive immune response (2). Because tumors, unlike infectious organisms, do not appear to strongly induce innate immunity, antitumor vaccines require adjuvants, which activate the innate immune system.

One such candidate adjuvant is IFN-α. IFN-α is commonly expressed by many cell types in response to TLR triggering (3, 4) and is produced in great quantities by plasmacytoid dendritic cells (pDCs)3 in response to viral and other infections (5). IFN-α connects the innate and acquired immune systems because it promotes the activation, expansion, survival, and memory differentiation of T lymphocytes through a variety of mechanisms including enhanced Ag presentation, costimulation (6, 7), and cross-priming (8, 9). Subsequently, IFN-α has direct effects on proliferation and survival of T lymphocytes (10, 11, 12, 13) and the formation and persistence of memory T cells (11, 14). An important potential mechanism by which IFN-α may promote memory formation is by up-regulating IL-15 and IL-15Rα expression by myeloid cells (15, 16). IL-15 is a homeostatic cytokine whose primary role is to support the survival and maintenance of memory CD8+ T cells. Although it shares both the β and γ subunits with the IL-2 receptor, the IL-15 receptor has a unique α subunit that allows trans-presentation of IL-15 to T cells with far greater efficiency than IL-15 alone (17, 18). IFN-α has been shown to up-regulate both IL-15 and IL-15Rα in myeloid dendritic cells (mDCs), which may then act to stimulate CD8+ T cells via trans-presentation (16).

There is evidence that type I IFNs can act as adjuvants for a variety of experimental vaccines. Type I IFN, when used in conjunction with an influenza vaccine, boosted Th1-type humoral immune responses, improved protection against viral challenge (19), and enhanced CTL induction after immunization with an influenza-derived peptide (20). In tumor models, low endogenous levels of IFN-α promoted antitumor activity of CD8+ T cells (21), while exogenous IFN-α enhanced the efficacy of GM-CSF-secreting whole-cell melanoma vaccine (22), and IFN-α-secreting colorectal tumor cells promoted expansion and survival of tumor-specific CTL (23). Although IFN-α is believed to have a direct cytostatic/cytocidal effect on human melanoma (24, 25, 26), there is strong evidence that it also acts through an immune-mediated mechanism. A recent large study showed that development of autoimmune phenomena in melanoma patients after IFN-α treatment strongly correlated with improved survival (27). However, the utility and mechanism of IFN-α as a melanoma vaccine adjuvant remains unclear. One clinical trial of gp100 peptide vaccination in which low-dose IFN-α was coadministered with the vaccine lacked a vaccine-alone arm (28), precluding a conclusion regarding the impact, if any, of IFN-α on T cell induction. A second small trial of gp100 peptide vaccination with high-dose IFN-α (28, 29) showed that the vaccine plus IFN-α arm was no worse than vaccine alone, with a trend toward stronger T cell responses in patients receiving IFN-α.

Currently, the ability of type I IFNs to enhance tumor-specific CD8+ T cell responses to peptide vaccination is unknown, as is the potential mechanism or mechanisms by which this might occur. In the present study, we tested the vaccine adjuvant effect of IFN-α on the CD8+ T cell response to antitumor peptide vaccination targeting established B16 melanoma, and its mechanism. Our results demonstrate that IFN-α can serve as an effective adjuvant for antimelanoma peptide vaccination, and may be a promising approach to boosting the efficacy of current melanoma vaccination strategies.

Materials and Methods

Mice and tumor cells

C57BL/6 mice were obtained from the National Cancer Institute. Pmel-1 TCR transgenic mice (30) on a pure C57BL/6 background (The Jackson Laboratory) were bred and housed at the M.D. Anderson Cancer Center animal facilities and were used at 6–12 wk of age. Pmel-1 mice were crossed with IFN-α receptor (IFNAR)−/− mice (31) (provided by Dr. Paul W. Dempsey, Department Of Microbiology and Molecular Genetics, University of California Los Angeles and Dr. Tadatsugu Taniguchi, Department Of Immunology, Tokyo University, Japan) to generate pmel-1/IFNAR−/− mice. Direct flow cytometric analysis for IFNAR on PBMC from the backcrossed progeny was performed to confirm loss of both IFNAR alleles. IL-15Rα−/− mice (32) were generously provided by A. Ma (University of California, San Francisco, CA) and backcrossed to C57BL/6 mice 15 generations. IL-15−/− mice (33) were obtained from Taconic Farms. All animal experiments were reviewed and approved by the University of Texas M.D. Anderson Institutional Animal Care and Use Committee (IACUC). B16 is an H-2b+gp100+ spontaneous murine melanoma obtained from the National Cancer Institute tumor repository and maintained in culture medium containing RPMI 1640 with 10% heat-inactivated FBS, 0.03% l-glutamine, 100 μg/ml streptomycin, and 100 μg/ml penicillin (Invitrogen).

Peptides

All synthetic peptides were synthesized using regular Fmoc chemistry. The synthetic, H-2Db-restricted peptides, mouse mgp10025–33 (EGSRNQDWL), the high-affinity altered peptide ligand human hgp10025–33 (KVPRNQDWL) (34), and the H-2Kb-restricted chicken OVA (OVA257–264) peptide (SIINFEKL) were synthesized by Multiple Peptide Systems to a purity >95%.

Tumor treatment

C57BL/6 mice or knockout mice (n = 5/group unless indicated otherwise) were injected s.c. with 3 × 105 B16 melanoma cells and infused i.v. with 1 × 107 fresh TCR-transgenic pmel-1 or pmel-1/IFNAR−/− splenocytes (∼2 × 106 CD8+Vβ13+Thy1.1+ T cells). Mice were vaccinated with two separate s.c. injections to the flank with 100 μl of water/IFA emulsion, each containing 100 μg of hgp10025–33 peptide or OVA peptide257–264. Hydrodynamic gene transfer (HGT) consisted of a single i.v. injection of indicated amount of endotoxin-free pORF plasmid encoding murine IFN-α (abbreviated to pIFN-α in the text for clarity) or pORF control plasmid DNA (InvivoGen) in 2 ml of saline on the day of vaccination as previously described (35). This plasmid contains the ampicillin resistance gene for antibiotic selection. Alternatively, we injected 100,000 IU recombinant Universal IFN-α protein (PBL Laboratories) i.p., once on the day of vaccination and twice a day on the 2 following days. Tumors were measured with calipers, and the products of perpendicular diameters were recorded. Animal experiments were approved by the institutional IACUC and mice were sacrificed when tumors reached 200 mm2 or became ulcerated or mice became moribund.

Flow cytometry, intracellular IFN-γ, and apoptosis assays

To obtain appropriate lymphocyte samples, mice were either tail-bled on indicated days after vaccination or sacrificed for organ isolation. Erythrocytes were removed by hypotonic lysis or Ficoll gradient separation, and cells were stained with the indicated dilutions of mAbs against CD8α-allophycocyanin (1/200, clone 53-6.7), Vβ13-FITC (1/200, clone MR12-3), and Thy1.1-PE (1/800, clone OX-7), all from BD Biosciences. Propidium iodide was used to exclude nonviable cells from analysis. Intracellular IFN-γ assay was performed using the Cytofix/Cytoperm kit (BD Biosciences) according to the manufacturer’s recommendations after 4 h of stimulation with 1 μM mgp10025–33 peptide and using a 1/800 dilution of anti-IFN-γ-PE mAb (clone XMG1.2). Annexin staining was performed on unfixed cells with an annexin V-FITC staining kit according to the manufacturer’s instructions (BD Biosciences). Goat anti-IL-15Rα-biotin and goat anti-IL-15-biotin (R&D Systems) was detected by streptavidin-allophycocyanin (Jackson ImmunoResearch Laboratories) after preincubation with Fc block (BD Biosciences). A biotinylayed goat Ig control (Jackson ImmunoResearch Laboratories) was used to determine background staining. The following mAbs were purchased from BD Biosciences: CD44, CD62L, CD8α, and CD127. Samples were analyzed using a FACSCalibur or LSRII flow cytometer (BD Biosciences) and CellQuest (BD Bioscienes) or Flo-Jo (Tree Star) software.

IFN-α ELISA and multiplex cytokine analysis (Luminex)

IFN-α ELISA was performed on serum using the muIFN-α ELISA kit (PBL Biomedical Laboratories) according to manufacturer’s recommendations. For Luminex assays, fresh spleens were harvested and splenocytes obtained by mechanical disruption, mesh filtration, and lysis of RBC with ACK lysis buffer (BD Biosciences). Splenocytes were cultured for 24 h in the presence of 30 IU/ml recombinant human IL-2 and 1 μM mgp10025–33 peptide. Supernatants were harvested, clarified by centrifugation, and stored at −70 degrees until the time of assay. Luminex assay was performed according to the manufacturer’s instructions.

CFSE labeling

Before adoptive transfer of Thy1.1+ donor pmel-1 splenocytes to Thy1.2+ C57BL/6 mice, RBC were lysed with ACK lysis buffer, and cells were labeled with 5 μM CFSE at 37°C for 10 min. Cells were then washed, counted, and 2 × 107 donor splenocytes transferred i.v. as described above.

Generation of bone marrow-derived DCs and pmel-1 T cell lines

For generation of bone marrow-derived DCs, bone marrow cells from normal C57BL/6 (WT), IL-15Rα−/−, and IL-15−/− mice were isolated by flushing femurs with RPMI containing 2% FBS followed by lysis of RBCs. The cells were filtered through a 70-μm filter before resuspension in RPMI 1640 containing 2.5 mM HEPES, 5.5 × 10−5 M 2-ME, 100 U/ml penicillin, 100 μg/ml streptomycin, 5 mM glutamine, and 10% FBS (complete medium, CM). Cells were seeded at 1 × 106/ml in complete medium supplemented with 10 ng/ml GM-CSF and cultured at 37°C with 5% CO2 for 6 days total with a 1:2 passage with fresh medium and GM-CSF after 3 days. Loosely adherent cells (GM-DC) were then collected on day 6, analyzed for expression of CD11c, CD11b, CD86, and MHC class II by flow cytometry, and used to set up cocultures with CD8+ T cell lines. DC cultures were at least 90% CD11c+CD11b+, CD86int, and MHC class IIint. Pmel-1 T cell lines were generated from pmel-1 splenocytes cultured with GM-DCs prepulsed with the cognate peptide (splenocyte/APC ratio 10/1; peptide concentration 10 μg/ml) for at least 8–10 days in presence of 20 IU/ml recombinant murine IL-2 (R&D Systems). T cell lines were composed of at least 95% pure CD8+, tetramer+, CD44high cells.

T cell/DC Cocultures

Pmel-1 T cell lines were first resuspended in RPMI 1640 at 1 × 107 cells/ml and stained with CSFE (0.3 μg/ml) for 10 min at 37°C. Cold RPMI 1640 containing 20% FCS was added to stop the reaction and cells were washed, resuspended in CM, and cultured with or without soluble murine rIL-15 (R&D Systems) or with GM-DCs at a 1:1 ratio in CM (final CD8+ T cells concentration in the assay was 5 × 105/ml). DCs were either untreated or treated for 24 h with recombinant Universal IFN-α at 1000 U/ml (PBL Biomedical Laboratory) and then washed before coculture with T cells. Biological activity of IFN-α was verified by flow cytometric analysis of up-regulation of MHC I and CD86 molecules (data not shown). Aliquots were taken at different time points from each culture condition and cells were stained for CD8 and Thy1.1 expression to detect pmel-1 T cells in the samples. CSFE dilution for CD8+ Thy1.1+ T cells and percentages of CD8+ T cells in the cocultures were analyzed by flow cytometry. Total CD8 T cells were counted by flow cytometry by acquiring events for a fixed time period of 100 s.

Statistics

Statistical analyses to compare T cell numbers and tumor sizes between treatment and control groups were determined by student’s t test, with p values <= 0.05 considered significant. Where appropriate, Welch’s correction for unequal variances was applied. All data shown are representative of at least two independent experiments with similar results. All statistical analyses were performed using GraphPad Prism version 5.01 for Windows, GraphPad Software.

Results

IFN-α enhances vaccine-induced CD8+ T cell responses and suppression of established B16 melanoma

To assess the effect of Type I IFN administration on the CD8+ T cell response to peptide vaccination, we used hydrodynamic gene transfer of murine IFN-α expression vector (pIFN-α) or empty vector control (pORF). A single HGT with pIFN-α resulted in serum IFN-α levels which peaked at day 2 postinjection, and then persisted at slowly declining levels for at least 32 days (Fig. 1⇓A). These peak levels are comparable to those obtained during an acute viral infection (36, 37). Importantly, HGT with pORF control plasmid did not induce detectable levels of serum IFN-α. Mice were immunized with OVA peptide in IFA followed by HGT with pIFN-α or pORF control plasmid. Vaccination in combination with control plasmid did not lead to measurable induction of OVA tetramer-positive CD8+ T cells in PBL (Fig. 1⇓B). When vaccination was followed by HGT with IFN-α-expressing plasmid, a rise in OVA-specific CD8+ T cells was observed, which peaked around day 20. This demonstrates that IFN-α enhances the response of the endogenous CD8+ T cell repertoire to peptide vaccination.

FIGURE 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 1.

IFN-α enhances vaccine-induced CD8+ T cell response and tumor suppression. A, C57BL/6 mice received one i.v. injection of 2 μg pIFN-α or control pORF plasmid and serum samples were tested for IFN-α by sandwich ELISA on indicated days. Results are the average of three mice ± SEM. Differences are significant (p < 0.01) on days 2–31. B, C57BL/6 mice were vaccinated with OVA257–264 peptide in IFA followed by HGT with indicated doses of pIFN-α or pORF plasmid. CD8+ OVA-specific (tetramer-positive) T cells were detected by flow cytometry of peripheral blood on the indicated days. Difference is significant (p < 0.05) on day 21. C, Thy1.2+ C57BL/6 mice received either no treatment or 2 × 107 Thy1.1+ pmel-1 splenocytes. Where indicated, mice received gp100/IFA vaccination and/or HGT with 1 μg pIFN-α or pORF plasmid. On day 6, pmel-1 T cells were detected by flow cytometric analysis of peripheral blood for Thy1.1+Vβ13+CD8+ cells. D, After adoptive transfer of pmel-1 T cells, mice received pmel-1 T cells as in c followed by either no further treatment, or vaccination with gp100 peptide and HGT with the indicated plasmid. Pmel-1 T cells in peripheral blood were detected at the indicated times, as described above. Note that 4.5 μg pIFN-α was a lethal dose (four of five mice dead on day 7). E, Mice received pmel-1 splenocytes, vaccine, and HGT with 1 μg pIFN-α or pORF plasmid as in C; an additional group of mice received pmel-1 splenocytes and vaccine followed by 100,000 IU purified recombinant Universal IFN-α protein (rIFN-α) i.p. on the day of vaccination (day 0) and twice daily on days 1, 2, and 3. Pmel-1 T cells in PBMC were quantified by flow cytometry on day 4 post vaccination. F and G, Tumor-bearing Thy 1.2+ C57BL/6 mice received either no treatment or adoptive transfer of Thy1.1+ pmel-1 T cells with or without gp100/IFA vaccine as described above. Where indicated, mice were also injected with 2 μg pIFN-α or pORF plasmid on the day of vaccination. Pmel-1 T cells in blood (F) were detected by FACS; the differences between pIFN-α and pIFN-α plus vaccine groups were significant (p < 0.05) on days 6, 13, and 16. Tumor growth (G) is plotted as the product of perpendicular diameters.

To follow the CD8+ T cell response to peptide vaccination against a melanoma-expressed self Ag, and examine the ability of type I IFN to enhance vaccine-induced tumor regression, we used the pmel-1 model of anti-gp100 vaccination (30). In this model, which has been extensively used by our laboratory and others to examine vaccine-specific CD8+ T cell responses in vivo, immunocompetent wild-type (WT) C57BL/6 mice receive anti-gp100 CD8+ T cells from pmel-1 mice which are transgenic for a Vα 1/Vβ13 TCR which recognizes the mgp10025–33 peptide in the context of H-2Db. A Thy1.1/Thy1.2 mismatch between donor and host allows tracking of the expansion of Thy1.1+ gp100-specific donor CD8+ T cells in the Thy1.2+ recipient mouse over time. After adoptive transfer of gp100-specific pmel-1 T cells, vaccination with gp10025–33 peptide in IFA resulted in a measurable expansion of pmel-1 (Thy1.1+, Vβ13+) CD8+ T cells (Fig. 1⇑C), which was significantly enhanced by HGT with IFN-α-expressing plasmid, but not empty vector control (pORF). IFN-α did not obviate the requirement for vaccination for the proliferation of pmel-1 T cells, but strongly increased the number of vaccine-induced pmel-1 T cells in a dose-dependent manner, up to 80% of circulating CD8+ T cells (Fig. 1⇑D). The maximum tolerated dose of pIFN-α was 3 μg (data not shown), while 4.5 μg killed 4/5 mice by day 7. To avoid possible confounding factors introduced by our HGT method and to more closely reflect clinical situations in which IFN-α is administered as a recombinant protein, we injected mice receiving pmel-1 T cells and gp100 peptide vaccine with 100,000 IU purified, recombinant Universal IFN-α (rIFN-α) twice a day for 3 days and analyzed pmel-1 T cell levels on day 4 (Fig. 1⇑E). As expected, results with rIFN-α were similar to those obtained with the IFN-α HGT method.

We and others have used the pmel-1 model to examine the ability of immunomodulatory agents to enhance vaccine-mediated antitumor activity, and have shown that in this model suppression of melanoma growth is strictly dependent upon CD8+ CTLs (30, 34). Mice bearing established 7-day B16 melanoma responded to vaccination with hgp100 peptide in IFA with a small and transient rise in Ag-specific CD8+ T cells (Fig. 1⇑F), which failed to suppress tumor growth (Fig. 1⇑G). Addition of IFN-α to peptide vaccination produced a marked increase in vaccine-induced CD8+ T cells, which strongly inhibited the growth of B16 melanoma (Fig. 1⇑, F and G). Treatment with IFN-α alone in the absence of vaccination failed to induce a gp100-specific CD8+ T cell response (Fig. 1⇑F), although it did transiently inhibit tumor growth for ∼2 wk, possibly due to the known direct tumoristatic effect of IFN-α on melanoma cells or through activation of other immune cells (Fig. 1⇑G). Nevertheless, the full antitumor effect of IFN-α was dependent on a concurrent strong, vaccine-induced CD8+ T cell response. IFN-β, another type I IFN which signals through the same heterodimeric IFNAR, had similar effects on both vaccine-induced CD8+ T cell expansion and inhibition of tumor growth (data not shown), suggesting that the ability to serve as a vaccine adjuvant may be a common property of type I IFNs.

IFN-α enhances the accumulation of activated Ag-specific CD8+ T lymphocytes in tumor

To determine whether the highly elevated levels of vaccine-induced T cells seen in the circulation of IFN-α-treated mice were representative of pmel-1 accumulation in tumor and lymphoid tissues, we examined the absolute number of gp-100-specific pmel-1 T cells and other leukocytes in the blood, spleen, and tumor after adoptive transfer of pmel-1 T cells and vaccination. On day 7 after vaccination and transfer, absolute numbers of pmel-1 T cells were increased 6- to 15-fold in all assessed tissues in mice receiving pIFN-α compared with pORF control (Fig. 2⇓, A–C). The increase in absolute number of total infiltrating cells after vaccination and IFN-α administration was limited to Ag-specific pmel-1 T cells, with no significant change seen in the numbers of NK, CD4+ T, and bystander (non-pmel-1) CD8+ T cells. Although an increase in the total number of CD8+ T cells was seen in tumor from IFN-α-treated mice (Fig. 2⇓C), this was entirely accounted for by the increase in pmel-1 CD8+ T cells into tumor, rather than enhanced accumulation of nonspecific/bystander CD8+ T cells. IFN-α-induced accumulation of Ag-specific pmel-1 T cells tended to be stronger in tumor (15-fold increase) than in spleen (11-fold) and blood (6-fold).

FIGURE 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 2.

IFN-α promotes the specific accumulation of activated pmel-1 T cells. Thy1.2+ C57BL/6 mice bearing s.c. 7-day B16 melanoma received 2 × 107 Thy1.1+ pmel-1 splenocytes. Where indicated, mice received gp100/IFA vaccination and/or HGT with 2 μg pIFN-α or pORF plasmid. Seven days after vaccination, organs and tumor were isolated and leukocytes were analyzed for indicated markers by flow cytometry. The IFN-α-induced increase in absolute numbers per organ for the indicated cell types is plotted for PBMC (A), spleen (B), and tumor (C). D, Thy1.1+ pmel-1 CD8+ T cells were sorted from spleen homogenates obtained on day 7 after adoptive transfer, vaccination, and treatment with pIFN-α or pORF plasmid as described above. Sorted pmel-1 T cells were cultured overnight in the presence of 30 IU/ml IL-2 and 1 μM mgp10025–33 peptide and Luminex multiplex cytokine analysis was performed. Asterisk indicates significant difference (p < 0.05).

We examined the activation status of FACS-sorted splenic pmel-1 T cells on day 7 after vaccination by assaying their mgp10025–33 peptide-induced production of inflammatory cytokines and chemokines associated with T cell activation using Luminex multiplex cytokine analysis (Fig. 2⇑D). Pmel-1 T cells isolated from IFN-α-treated mice secreted greater quantities of the effector cytokines TNF-α (2-fold) and IFN-γ (5.4-fold) as well as the T cell chemotactic factor MIP-1α (6-fold). Staining of ex vivo-stimulated pmel-1 T cells for intracellular IFN-γ likewise demonstrated that IFN-α treatment induced a significant increase in the number of gp100-specific CD8+ T cells producing IFN-γ in blood, spleen, and tumor (Fig. 3⇓, A–D). In the case of tumor-derived pmel-1 T cells, a substantial proportion was highly activated at baseline, possibly through in situ recognition of tumor-derived gp100, and secreted IFN-γ even without peptide stimulation (6%); this proportion was increased (to 12%) in IFN-α-treated mice (data not shown), resulting in higher absolute number of IFN-γ-producing pmel-1 T cells per gram of tumor (Fig. 3⇓D). Similarly, the percentage of pmel-1 T cells that produced IFN-γ after antigenic restimulation ex vivo was much higher in tumor than in spleen both without (21 vs 4%) and with (47 vs 9.6%) IFN-α treatment (data not shown and Fig. 4⇓D), suggesting that increased accumulation of highly activated antitumor CD8+ T cells occurs through selectively enhanced infiltration of activated gp100-specific CD8+ T cells and/or preferential activation of gp100-specific CD8+ T cells within the tumor.

FIGURE 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 3.

IFN-α increases IFN-γ-production by pmel-1 T cells. Thy1.2+ C57BL/6 mice bearing s.c. 7-day B16 melanoma received 2 × 107 Thy1.1+ pmel-1 splenocytes. Where indicated, mice received gp100/IFA vaccination and/or HGT with 2 μg pIFN-α or pORF plasmid. Seven days after vaccination, blood, spleens, and tumors were isolated and total lymphocytes were isolated and incubated for 4 h in the absence (CM) or presence of 1 μM mgp10025–33 peptide and in the presence of brefeldin A before flow cytometry for CD8, Thy1.1, and intracellular IFN-γ. Representative scatter plots of IFN-γ production by CD8+Thy1.1+ pmel-1 T cells from PBMC are shown in A; aggregated data representative of five mice per group are presented in B–D. Asterisk indicates significant difference (p < 0.05).

FIGURE 4.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 4.

IFN-α prevents the death of pmel-1 T cells and enhances their proliferation. Thy1.2+ C57BL/6 mice bearing s.c. 7-day B16 melanoma received 2 × 107 Thy1.1+ pmel-1 splenocytes. Where indicated, mice received gp100/IFA vaccination and/or HGT with 1.25 μg pIFN-α or pORF plasmid. Organs and tumor were isolated on day 7 after vaccination and analyzed by flow cytometry for the presence of apoptotic (Annexin V+) pmel-1 (CD8+, Thy1.1+) T cells. A representative scatter plot is demonstrated in A. The bar graphs (B) summarize the percentage of annexin V+ cells in the pmel-1 and bystander CD8+ T cell populations. Asterisk indicates significant (p < 0.05) difference. C, Thy1.1+ pmel-1 T cells were labeled with CFSE before i.v. transfer into C57BL/6 mice and gp100 vaccination and HGT with pIFN-α or control pORF plasmid. On day 2 and 4 after vaccination, splenocytes were harvested and CFSE dilution used to determine the rates of proliferation of pmel-1 T cells in vivo. Plots shown are gated on Thy1.1+ cells, and representative of results from three mice. Difference between pORF and pIFN-α groups on day 4 was statistically significant (p = 0.002).

IFN-α protects vaccine-induced CD8+ T cells from activation-induced apoptosis and enhances their proliferation

The in vivo expansion of CD8+ T cells lacking the IFNAR during acute viral infection is impaired due to their greater rate of apoptosis (11, 12, 38). To determine whether IFN-α-mediated increase of tumor-specific CD8+ is due to increased proliferation, increased T cell survival, or both mechanisms, we used annexin-V staining to examine the rates of apoptosis in vivo in both the endogenous and vaccine-induced CD8+ T cell compartments after vaccination and HGT with pIFN-α or control plasmid (Fig. 4⇑, A and B). After using forward/side scatter profiles and propidium iodide exclusion to gate on the population of live lymphocytes, we stained for CD8+ and Thy1.1 to identify the bystander and Ag-specific pmel-1 T cell compartments (Fig. 4⇑A). Although low levels of apoptosis were observed in the bystander CD8+ T cell population (containing mostly unstimulated cells), a significantly higher fraction of apoptotic Ag-specific pmel-1 T cells was observed in PBL, spleen, and tumor from mice receiving pORF control plasmid (up to 75% annexin+ cells vs <10% in the bystander population). However, pmel-1 T cells from IFN-α-treated mice showed a dramatically lower rate of apoptosis in the PBL (28 vs 75%) and spleen (15 vs 52%). Ag-specific pmel-1 T cells harvested from tumor demonstrated lower baseline rates of apoptosis than cells harvested from PBL or spleen and only a small, nonsignificant, decrease in apoptosis upon IFN-α treatment. This may be due to the availability of Ag or T cell survival factors present in the tumor milieu, or the result of preferential trafficking into tumor of T cells that have received survival signals.

Adoptive transfer studies with IFNAR-deficient CD8+ T cells undergoing expansion in response to acute viral infection have suggested that rates of Ag-induced proliferation in IFNAR-positive and -deficient T cells are similar, and that the impaired expansion of IFNAR-deficient CD8+ T cells is explained by increased susceptibility to apoptosis (11, 12). We used adoptive transfer of CFSE-labeled pmel-1 T cells to determine whether exogenously supplied IFN-α affected the vaccine-induced proliferation of CD8+ T cells (Fig. 4⇑C). On day 2 after gp100 vaccination, the majority of pmel-1 T cells had not yet divided in mice that had received either pIFN-α or control pORF plasmid (Fig. 4⇑C, left). By day 4 after vaccination (Fig. 4⇑C, right), pmel-1 T cells from both pIFN-α- and pORF-treated mice had undergone multiple rounds of division; however, pmel-1 T cells from IFN-α-treated mice displayed a slightly greater rate of proliferation (see representative scatter plot, as well as mean fluorescence intensity in Fig. 4⇑C, right). Thus, exogenously supplied IFN-α increases vaccine-induced CD8+ T cell numbers by both enhancing their rate of proliferation and protecting them from activation-induced apoptosis.

IFN-α promotes the generation and long-term persistence of CD8+ T cells with an effector memory phenotype

Anticancer vaccination has two related objectives: raising an acute response to destroy existing tumor bulk and establishing specific memory to protect against outgrowth of any remaining or newly arising tumor cells. We therefore studied the impact of IFN-α on the longevity of tumor-specific T cell responses after vaccination. We found that IFN-α maintained the down-regulation of IL-7Rα expression on pmel-1 T cells on day 4 after vaccination (Fig. 5⇓A), consistent with activation of a greater proportion of Ag-specific CD8+ T cells in IFN-α-treated mice. To determine whether the Ag-specific CD8+ T cells induced in the presence of exogenous IFN-α can persist after initial exposure to Ag, we examined peripheral (lung), and lymphoid (spleen and lymph node) tissue at 90 days after vaccination. We found significantly higher absolute numbers of vaccine-induced anti-gp100 pmel-1 T cells in both nonlymphoid (lung) and lymphoid (spleen) tissues of IFN-α-treated mice (Fig. 5⇓B). Flow cytometric analysis of the CD44high (Ag-experienced) population revealed that while pmel-1 T cells from control (pORF) mice displayed an IL-7Rαhigh, and predominantly CD62Lhigh phenotype consistent with the CD8+ T cells of a central memory phenotype, pmel-1 T cells from IFN-α treated mice displayed an IL-7Rαlow, CD62Llow phenotype consistent with persistently activated effector cells (Fig. 5⇓, C and D). Because these mice were never revaccinated after induction of the primary response, the difference in phenotype (central memory vs persistent activation) may be the result of either a developmental program initiated by high-dose IFN-α at the time of vaccination, or prolonged stimulation of pmel-1 T cells by persistent expression of IFN-α (see Fig. 1⇑A). In summary, IFN-α promotes the persistence and differentiation of antitumor memory CD8+ T cells that preferentially migrate to nonlymphoid tissues and resemble effector memory T cells.

FIGURE 5.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 5.

IFN-α promotes IL-15Rα up-regulation and long-term persistence of pmel-1 T cells. Thy1.2+ C57BL/6 mice received Thy1.1+ pmel-1 splenocytes, hgp10025–33 peptide vaccination, and HGT with 1 μg pIFN-α or pORF control. A, Spleens were isolated on day 4 and stained to identify the monocyte, mDC, total CD8+ T cell and pmel-1 (CD8+Thy1.1+) populations; then stained with anti-IL-15Rα (solid lines) or isotype controls (shaded) and analyzed by flow cytometry. Alternatively, pmel-1 CD8+ T cells (solid lines) or bystander CD8+ T cells (shaded) were stained with anti-IL-7Rα. Numbers indicate average mean fluorescence intensity. B–D, On day 90 postvaccination, spleen; lungs; and cervical, axial, and mesenteric lymph nodes were isolated (B); asterisk indicates statistically significant difference (p < 0.05). The total number of pmel-1 CD8+Thy1.1+CD44high cells was determined by manual cell count and flow cytometry. C, Staining and flow cytometry to determine the percentage of IL-7Rαhigh cells was performed on CD44highThy1.1+ pmel-1 T cells (shaded) using as a positive control CD44lowThy1.1− naive CD8 T cells (solid line), both from vaccinated mice treated with pORF or pIFN-α. D, Within the CD44high population, percentage of CD62Lhigh expression was determined by flow cytometry for pmel-1 T cells from vaccinated mice treated with pORF or pIFN-α; gating based on IgG control staining.

Increased expansion and persistence of Ag-specific CD8+ T cells by IFN-α requires IFNAR expression by the T cells and enhanced IL-15 transpresentation by host cells

To determine whether IFN-α acts directly on Ag-specific CD8+ T cells to support their proliferation and survival, we crossed pmel-1 mice with IFNAR knockout mice and compared the vaccine-induced expansion of WT (IFNAR+/+) and IFNAR−/− pmel-1 T cells (Fig. 6⇓A). The expansion of IFNAR-sufficient pmel-1 T cells after vaccination was greatly enhanced by the administration of IFN-α. In contrast, expansion of IFNAR-deficient pmel-1 T cells was comparable in pIFN-α and pORF-treated animals. This demonstrates that the adjuvant activity of IFN-α requires direct stimulation of Ag-specific CD8+ T cells through the IFNAR.

FIGURE 6.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 6.

Both IFNAR expression on pmel-1 T cells and IL-15/IL-15Rα expression by APCs are necessary for optimum expansion and persistence of Ag-specific CD8+ T cells. A, C57BL/6 mice received 2 × 107 splenocytes from pmel-1/IFNAR+/+ or pmel-1/IFNAR−/− mice, followed by hgp10025–33 peptide vaccination and HGT with 1 μg pIFN-α or pORF control. Hgp10025–33 tetramer-positive CD8+ pmel-1 T cells were detected by flow cytometry of peripheral blood on the indicated days. The difference between IFNAR+/+ plus pIFN-α and IFNAR−/− plus pIFN-α groups is significant (<0.05) on days 5, 7, 10, 20, and 25. B, Thy1.2+ WT or IL-15−/− C57BL/6 mice received 2 × 107 Thy1.1 plus pmel-1 splenocytes, hgp10025–33 peptide vaccination, and HGT with 1 μg pIFN-α or pORF control. Thy1.1+ CD8+ pmel-1 T cells were detected by flow cytometry of peripheral blood on the indicated days. The difference between IL-15+/+ plus pIFN-α and IL-15−/− plus pIFN-α groups is significant (<0.05) on days 19–41. C, Equivalent numbers of pmel-1 CD8+ T cells from pmel-1 CD8+ T cell lines were cultured in either medium, medium with soluble recombinant murine IL-15 (rIL-15) or with DCs derived from C57BL/6 (WT), IL-15−/−, or IL-15Rα−/− mice. DCs were either untreated or treated for 24 h with murine IFN-α and washed before coculture. On day 19 of coculture, cells were stained for CD8 and Thy1.1 expression to detect pmel-1 CD8+ T cells by flow cytometry. Shown are absolute numbers of live pmel-1 T cells. D, mDCs derived from C57BL/6 (WT), IL-15−/−, or IL-15Rα−/− mice were left untreated or treated for 24 h with murine IFN-α. Surface expression of IL-15 was detected by flow cytometry. Shaded histograms represent isotype control, gray lines cells cultured in the absence of IFN-α, black lines cells cultured in the presence of IFN-α.

Because IL-15 is known to be important for the homeostatic maintenance of Ag-experienced memory CD8+ T cells and IFN-α induced in vivo up-regulation of IL-15Ra, required for transpresentation of IL-15 to responding T cells (Fig. 5⇑A), we compared the vaccination-induced expansion of adoptively transferred pmel-1 T cells in WT and IL-15−/− knockout mice (Fig. 6⇑B). In the absence of IFN-α, pmel-1 T cells underwent a similar, modest, expansion in response to vaccination in both WT and IL-15 KO mice. In contrast to the impairment of IFN-α enhanced proliferation seen with IFNAR−/− pmel-1, the early peak and decline in vaccine-induced pmel-1 numbers was nearly identical in WT and IL-15 knockout mice. However, while IFN-α supported the continued persistence of pmel-1 T cells in WT mice (15–25% of all CD8+ T cells for up to 40 days), in IL-15−/− knockout mice pmel-1 levels fell to a plateau of 5–6% of all CD8+ T cells. Thus, IL-15 expression by host cells is required for the long-term maintenance of CD8+ T cells induced by vaccination and IFN-α.

To better define whether the observed IFN-α-induced, IL-15-dependent maintenance of pmel-1 T cells was mediated by a direct induction by IFN-α of IL-15 in mDCs, we stimulated purified mDCs from WT, IL-15−/−, or IL-15Rα−/− mice with IFN-α for 1 day and cocultured them with previously activated pmel-1 effector T cells (Fig. 6⇑C). Pmel-1 T cells cultured in medium alone failed to expand or persist. When cocultured with bone marrow-derived mDCs from WT, IL-15−/−, or IL-15Rα−/− mice, or with soluble IL-15 in the absence of IFN-α, a modest increase in the number of persisting pmel-1 T cells was observed which was somewhat less in the cocultures containing IL-15−/−, or IL-15Rα−/− mDCs. A 1-day prestimulation of mDCs with IFN-α increased their ability to support pmel-1 T cell levels in an IL-15-dependent manner. We also observed that IFN-α treatment of mDCs up-regulated IL-15Rα-dependent surface expression of IL-15 (Fig. 6⇑D), providing further evidence that IFN-α promotes enhanced trans-presentation of IL-15 to T cells. IFN-α also substantially up-regulated expression of IL-15Rα on monocytes and mDCs in vivo (Fig. 5⇑A), suggesting that these cells may be able to more efficiently trans-present IL-15 to CD8+ T cells. These data suggest that exogenous IFN-α enhances persistence of vaccine-induced CD8+ T cells through the direct induction of increased IL-15Rα-dependent trans-presentation of IL-15 by host mDCs.

Discussion

The occasional and sometimes dramatic clinical responses in recent cancer vaccine trials suggest that vaccination against tumor-expressed Ags can induce clinically meaningful antitumor immunity, however currently these responses are only sporadic. One reason for the disappointing results of vaccine trials may be failure to induce adequate numbers of tumor-specific CD8+ T cells. Although clinical vaccination trials demonstrate circulating Ag-specific CD8+ T cell responses on the order of 0.05–5% of total circulating CD8+ T cells (1, 39), levels achieved during viral infection can reach up to 20% or more of circulating CD8+ T cells (40), which may better suggest the magnitude of response necessary for efficacy against established tumors. Vaccine-elicited T cells may also become functionally impaired in the tumor-bearing host due to lack of innate immune activating signals such as TLR ligands, inhibition by regulatory T cells (41), or active immunosuppression by the tumor itself. Finally, tumor-specific CD8+ T cells may expand initially but fail to persist long enough to mediate total tumor destruction if they do not receive continued survival signals (such as common γ-chain cytokines like IL-2, IL-7, and IL-15) (42) or are programmed improperly during priming and initial expansion (43).

Because the synthetic peptides that are widely used as vaccines are often poorly immunogenic by themselves, adjuvants can help to induce significant T cell responses. Type I IFNs provide a critical link between the innate and acquired immune response during viral infection, suggesting that they may also be efficacious as vaccine adjuvants. Long-term systemic treatment with IFN-α is currently approved for the management of chronic viral infections such as with hepatitis B and C viruses and several cancers, including melanoma. For our studies, we tested the vaccine adjuvant activity of IFN-α by inducing systemic IFN-α levels with the hydrodynamic gene transfer method. In animals, this method uses a brief hydrostatic pulse to transfect a microgram-amount of injected plasmid into normal hepatocytes, leading to long-term expression of the plasmid-encoded gene of choice. This method overcomes the significant obstacle of long-term daily injections of very costly recombinant IFN-α protein that has all but made impossible effective studies of the effects of prolonged, systemic in vivo treatment with IFN-α. Because even this small amount of plasmid DNA could conceivably contain sufficient CpG signals to trigger TLR9 on DCs to enhance the vaccine adjuvant effect of IFN-α, we repeated the experiment with recombinant IFN-α and observed similar effects, effectively proving that the observed adjuvant activity does not depend on TLR9 triggering.

We found that IFN-α was capable of significantly boosting the Ag-specific (pmel-1) CD8+ T cell response to gp100 peptide vaccination. To achieve this effect, both IFN and vaccination were required; IFN-α alone did not produce a measurable rise in the pmel-1 CD8+ T cell response. IFN-α also boosted the response of the endogenous CD8+ T cell repertoire in response to OVA peptide vaccination, demonstrating that type I IFN can act as an adjuvant for vaccination of either endogenous or adoptively transferred T cells against both nonself and self Ags. However, IFN-α adjuvant activity was limited to Ag-specific CD8+ T cells; the absolute number of nonspecific bystander CD8+ T cells, and the absolute numbers of other leukocytes (CD4+ T cells, NK cells) were not significantly increased in the peripheral blood, spleen, or tumor of IFN-α-treated mice. The boost in pmel-1 T cell numbers required the expression of the IFNAR on the pmel-1 T cells, demonstrating that in addition to exerting indirect effects on T cells through APCs, exogenous IFN-α also acts directly on activated Ag-specific CD8+ T cells.

When we measured T cell apoptosis and proliferation to determine their relative contribution to the IFN-induced accumulation of pmel-1 T cells, we found that exogenous IFN-α enhanced both proliferation and survival of vaccine-induced pmel-1 T cells. In the presence of IFN-α, Ag-specific pmel-1 T cells were protected from apoptosis in peripheral blood, spleen, and tumor, in a manner similar to the IFN-α-mediated protection of CD8+ T cells from apoptosis during viral infection. However, in contrast to the effect of endogenous IFN-α on CD8+ T cells during viral infection (11, 12), which seems limited to protecting them from apoptosis, we found a slight but consistent increase in the rate of Ag-specific CD8+ T cell proliferation after vaccination in the presence of exogenous IFN-α. This may be due to the continuous stimulation of the IFNAR on CD8+ T cells with high levels of IFN-α in our system compared with the more short-lived (1–5 days) systemic increase in IFN-α during acute viral infection in these reports (36, 37). Because these effects were seen over a range of nontoxic levels of IFN-α expression, our data suggest that adjuvant IFN at doses lower than required for antimelanoma IFN-α monotherapy may increase both tumor-specific CD8+ T cell survival and proliferation in patients undergoing peptide vaccination.

Efficacy of the antitumor CD8+ T cell response depends not only on the induction of specific T cells but also on their effector function. We found increased numbers of vaccine-induced pmel-1 T cells producing IFN-γ in tumor, PBMC, and spleen, as well as higher mean IFN-γ release by pmel-1 T cells from IFN-α-treated mice. The observed increased production of TNF-α, MIP-1α, and IFN-γ by purified pmel-1 T cells from vaccinated, IFN-α-treated mice is consistent with enhanced development of an activated, effector CTL phenotype (44). We and others have shown that the T cell-mediated regression of B16 melanoma is partly dependent on tumor-specific T cell-derived IFN-γ (45). MIP-1α is a member of the group of CC chemokines, and plays a role in chemotaxis of T cells from the circulation into inflamed tissue (46). TNF-α is also produced by activated CTL, and has diverse proinflammatory and some direct antitumor activities (47). The coordinated up-regulation of these cytokines in vaccinated mice treated with IFN-α is consistent with generation of a proinflammatory environment, which supports the infiltration and antitumor activity of vaccine-induced CTL.

Prevention of tumor recurrence may depend on the induction of a stable and long-lasting population of specific CD8+ effector T cells. The increase in Ag-specific CD8+ T cell numbers and CTL activation correlated with inhibition of tumor growth in mice bearing established s.c. B16 melanoma, a fast-growing and poorly immunogenic tumor. Although transient growth inhibition was seen in mice treated with IFN-α alone, uncontrolled tumor growth resumed within 2 wk after treatment and rapidly killed these mice; however, tumor growth was suppressed for over 4 wk in mice that received both vaccine and IFN-α. This correlates with the persistent increase in antitumor T cells in vaccinated mice treated with IFN-α. Even in vaccinated IFN-α-treated mice, tumor growth ultimately resumed, possibly due to the number of protective T cells dropping below a critical threshold, exhaustion of persistently stimulated pmel-1 T cells, or outgrowth of resistant tumor clones. Additional experiments will determine whether long-surviving tumor-specific cells are functional or have undergone exhaustion (48), and whether they depend on chronic IFN-α stimulation, persistent Ag stimulation, or both.

The phenotypic profile of IFN-α-induced CD8+ T cells may provide clues to their function and efficacy in vivo. IL-15 and IL-7 are constitutively produced common cytokine-receptor γ-chain-family cytokines which play an important role in maintenance of Ag-specific CD8+ T cells, with IL-7 supporting the proliferation and survival of naive cells, and IL-15 acting primarily on memory cells. IL-15 signals through a heterodimeric receptor composed of the IL-2/IL-15R β-chain and the common γ-chain, which are expressed on CD8+ memory T cells. The IL-15Rα is expressed primarily on activated monocytes and DCs where it acts to “trans-present” IL-15 to IL-15Rβ/γ-expressing target cells. IL-7Rα is expressed at high levels on naive CD8+ T cells, and down-regulated in response to signaling through the TCR. The phenotype of persistent IFN-α-induced pmel-1 cells (CD44high, CD62Llow, IL-7Rαlow) is similar to that of effector memory cells, which would also be consistent with their residence in peripheral tissues (lung). One potential application for cancer vaccine therapy is in long-term control of minimal residual disease after debulking therapy. CD8+ T cells of effector memory phenotype may be suitable for this purpose, because they would allow prolonged maintenance of highly active tumor-specific T cells to allow for immune surveillance. Alternatively, these IL-7Rαlow CD8+ T cells are reminiscent of a “short-lived effector” memory CD8+ T cells that have been recently identified (49). These cells have a longer survival than pure effector cells, but a shorter life span than memory T cells. Furthermore, these “short lived” memory CD8+ T cells have increased effector activities, and are induced by high levels of inflammation, yet still respond to a secondary stimulation.

The up-regulation of IL-15Rα and requirement for host-derived IL-15 in supporting persistence of IFN-α-induced pmel-1 T cells suggests that at least some of the adjuvant activity of IFN-α is mediated by IL-15Rα-mediated transpresentation of IL-15. Our in vitro data demonstrating that abolishing either IL-15 or IL-15Rα expression by mDCs completely abrogates the IFN-α-mediated enhancement of pmel-1 T cell persistence suggests that expression of IL-15 and IL-15Rα by DCs may also be important in vivo. The up-regulation of IL-15Rα we observed on IFN-α-stimulated mDCs in vitro and in vivo provides a straightforward mechanism by which type I IFN may enhance CD8+ T cell persistence by increasing the efficiency of IL-15 trans-presentation by mDCs. Interestingly, we found that IFN-α also up-regulated IL15Rα expression on total CD8+ T cells (data not shown) and pmel-1 T cells. The up-regulation of IL-15Rα on Ag-specific CD8+ T cells has been previously demonstrated in a study of the ability of IFN-α to promote CD8+ T cell expansion through cross-priming, in which IL-15Rα expression on CD8+ T cells peaked on day 3 after immunization in the presence of IFN-α (9). There is also evidence that IL-15Rα expression can enhance the response of CD8+ T cells to limiting amounts of IL-15 (15). At present the role, if any, of enhanced IL-15Rα expression on CD8+ T cells after IFN-α treatment remains unclear.

Collectively, our data support a model in which IFN-α, when used as an adjuvant for antitumor peptide vaccination, acts on mDCs and vaccine-induced CD8+ T cells to increase the height, longevity, and antitumor effect of the Ag-specific CD8+ T cell response. During the initial expansion and contraction of the Ag-specific CD8+ T cell compartment, in addition to the previously described ability of type I IFNs to enhance Ag presentation and costimulation by DCs, enhanced proliferation and survival requires direct stimulation of the IFNAR on the T cells themselves. Once IFN-α-enhanced CD8+ T cell levels decline to a plateau (in our studies, typically 50–80% of the peak response by day 12–15), their continued maintenance depends on the expression of IL-15 and probably IL-15Rα by host cells. Further studies will investigate whether the IFN-α-mediated increase in IL-15Rα on DCs and other cell types seen on day 4 postvaccination continues to longer timepoints, as suggested by the ability of IFN-α to support IL-15-dependent long-term persistence of Ag-specific CD8+ T cells. Experiments are also ongoing to determine whether persistence of Ag-specific CD8+ T cells during the plateau phase requires continued delivery of exogenous IFN-α such as achieved during HGT with IFN-α expression plasmid. Alternatively, IFN-α and IL-15/IL-15Rα signaling in the early phase of the vaccine response may initiate a developmental program in Ag-specific CD8+ T cells, which favors their persistence even after levels of exogenously supplied IFN-α have waned.

In summary, these data demonstrate the activity of IFN-α as an adjuvant for antitumor peptide vaccination, and provide a model system for further dissecting the mechanisms of adjuvant activity and optimizing IFN-α-enhanced vaccination in preclinical studies. Because IFN-α is already an approved treatment for melanoma, our data point toward a potentially promising role as vaccine adjuvant in human clinical trials. In particular, patients with surgically resected stage III melanoma that are receiving IFN-α as part of their standard-of-care treatment might benefit from concurrently receiving a proven safe and nontoxic peptide vaccination to potentially reduce their risk of disease recurrence through the induction of tumor-specific T cell responses.

Acknowledgments

We thank Drs. Yong-Jun Liu, Gregory Lizee, and Laszlo Radvanyi for helpful discussion.

Disclosures

The authors have no financial conflict of interest.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • ↵1 This work was partially supported by VENI Grant 916.046.014 from the Netherlands Organization for Scientific Research (NWO) to W.W.O., the MDACC SPORE in melanoma P50 CA093459 and by National Institutes of Health Grant AI070910 and the M.D. Anderson Trust Fellowship to K.S. This work was also partially supported by a National Research Service Award Institutional Training Grant T32 DC007367 from NIDCD.

  • ↵2 Address correspondence and reprint requests to Dr. Willem Overwijk, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0904, Houston, TX 77030. E-mail address: woverwijk{at}mdanderson.org

  • ↵3 Abbreviations used in this paper: pDC, plasmacytoid dendritic cell; HGT, hydrodynamic gene transfer; CM, complete medium; rIFN-α, recombinant Universal IFN-α; WT, wild type; mDC, myeloid dendritic cell; IFNAR, IFN-α receptor.

  • Received September 15, 2008.
  • Accepted April 10, 2009.
  • Copyright © 2009 by The American Association of Immunologists, Inc.

References

  1. ↵
    Rosenberg, S. A., J. C. Yang, N. P. Restifo. 2004. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10: 909-915.
    OpenUrlCrossRefPubMed
  2. ↵
    Medzhitov, R.. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819-826.
    OpenUrlCrossRefPubMed
  3. ↵
    Theofilopoulos, A. N., R. Baccala, B. Beutler, D. H. Kono. 2005. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23: 307-336.
    OpenUrlCrossRefPubMed
  4. ↵
    Stetson, D. B., R. Medzhitov. 2006. Type I interferons in host defense. Immunity 25: 373-381.
    OpenUrlCrossRefPubMed
  5. ↵
    Colonna, M., G. Trinchieri, Y. J. Liu. 2004. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5: 1219-1226.
    OpenUrlCrossRefPubMed
  6. ↵
    Gallucci, S., M. Lolkema, P. Matzinger. 1999. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5: 1249-1255.
    OpenUrlCrossRefPubMed
  7. ↵
    Honda, K., S. Sakaguchi, C. Nakajima, A. Watanabe, H. Yanai, M. Matsumoto, T. Ohteki, T. Kaisho, A. Takaoka, S. Akira, T. Seya, T. Taniguchi. 2003. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc. Natl. Acad. Sci. USA 100: 10872-10877.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    Cho, H. J., T. Hayashi, S. K. Datta, K. Takabayashi, J. H. Van Uden, A. Horner, M. Corr, E. Raz. 2002. IFN-α β promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J. Immunol. 168: 4907-4913.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    Le Bon, A., V. Durand, E. Kamphuis, C. Thompson, S. Bulfone-Paus, C. Rossmann, U. Kalinke, D. F. Tough. 2006. Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming. J. Immunol. 176: 4682-4689.
    OpenUrlAbstract/FREE Full Text
  10. ↵
    Havenar-Daughton, C., G. A. Kolumam, K. Murali-Krishna. 2006. Cutting edge: The direct action of type I IFN on CD4 T cells is critical for sustaining clonal expansion in response to a viral but not a bacterial infection. J. Immunol. 176: 3315-3319.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    Kolumam, G. A., S. Thomas, L. J. Thompson, J. Sprent, K. Murali-Krishna. 2005. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 202: 637-650.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    Aichele, P., H. Unsoeld, M. Koschella, O. Schweier, U. Kalinke, S. Vucikuja. 2006. CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion. J. Immunol. 176: 4525-4529.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    Curtsinger, J. M., J. O. Valenzuela, P. Agarwal, D. Lins, M. F. Mescher. 2005. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J. Immunol. 174: 4465-4469.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    Thompson, L. J., G. A. Kolumam, S. Thomas, K. Murali-Krishna. 2006. Innate inflammatory signals induced by various pathogens differentially dictate the IFN-I dependence of CD8 T cells for clonal expansion and memory formation. J. Immunol. 177: 1746-1754.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    Berard, M., K. Brandt, S. Bulfone-Paus, D. F. Tough. 2003. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J. Immunol. 170: 5018-5026.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    Mattei, F., G. Schiavoni, F. Belardelli, D. F. Tough. 2001. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol. 167: 1179-1187.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    Schluns, K. S., K. D. Klonowski, L. Lefrancois. 2004. Transregulation of memory CD8 T-cell proliferation by IL-15Rα+ bone marrow-derived cells. Blood 103: 988-994.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    Schluns, K. S., T. Stoklasek, L. Lefrancois. 2005. The roles of interleukin-15 receptor α: trans-presentation, receptor component, or both?. Int. J. Biochem. Cell Biol. 37: 1567-1571.
    OpenUrlCrossRefPubMed
  19. ↵
    Bracci, L., I. Canini, M. Venditti, M. Spada, S. Puzelli, I. Donatelli, F. Belardelli, E. Proietti. 2006. Type I IFN as a vaccine adjuvant for both systemic and mucosal vaccination against influenza virus. Vaccine 24: (Suppl 2):S2-S56-57.
    OpenUrlCrossRefPubMed
  20. ↵
    Takasu, H.. 2001. Interferon-α: an effective adjuvant for peptide-based cytotoxic T-cell vaccines. Kurume Med. J. 48: 171-174.
    OpenUrlPubMed
  21. ↵
    Curtsinger, J. M., M. Y. Gerner, D. C. Lins, M. F. Mescher. 2007. Signal 3 availability limits the CD8 T cell response to a solid tumor. J. Immunol. 178: 6752-6760.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    Prell, R. A., B. Li, J. M. Lin, M. VanRoey, K. Jooss. 2005. Administration of IFN-α enhances the efficacy of a granulocyte macrophage colony stimulating factor-secreting tumor cell vaccine. Cancer Res. 65: 2449-2456.
    OpenUrlAbstract/FREE Full Text
  23. ↵
    Hiroishi, K., T. Tuting, M. T. Lotze. 2000. IFN-α-expressing tumor cells enhance generation and promote survival of tumor-specific CTLs. J. Immunol. 164: 567-572.
    OpenUrlAbstract/FREE Full Text
  24. ↵
    Goldstein, D., J. Laszlo. 1988. The role of interferon in cancer therapy: a current perspective. CA Cancer J. Clin. 38: 258-277.
    OpenUrlCrossRefPubMed
  25. ↵
    Krasagakis, K., C. Garbe, C. C. Zouboulis, C. E. Orfanos. 1995. Growth control of melanoma cells and melanocytes by cytokines. Recent Results Cancer Res. 139: 169-182.
    OpenUrlCrossRefPubMed
  26. ↵
    Maellaro, E., L. Pacenti, B. Del Bello, M. A. Valentini, P. Mangiavacchi, C. De Felice, P. Rubegni, P. Luzi, C. Miracco. 2003. Different effects of interferon-α on melanoma cell lines: a study on telomerase reverse transcriptase, telomerase activity and apoptosis. Br. J. Dermatol. 148: 1115-1124.
    OpenUrlCrossRefPubMed
  27. ↵
    Gogas, H., J. Ioannovich, U. Dafni, C. Stavropoulou-Giokas, K. Frangia, D. Tsoutsos, P. Panagiotou, A. Polyzos, O. Papadopoulos, A. Stratigos, et al 2006. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med. 354: 709-718.
    OpenUrlCrossRefPubMed
  28. ↵
    Di Pucchio, T., L. Pilla, I. Capone, M. Ferrantini, E. Montefiore, F. Urbani, R. Patuzzo, E. Pennacchioli, M. Santinami, A. Cova, et al 2006. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-α results in the activation of specific CD8+ T cells and monocyte/dendritic cell precursors. Cancer Res. 66: 4943-4951.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    Smith, J. W., 2nd, E. B. Walker, B. A. Fox, D. Haley, K. P. Wisner, T. Doran, B. Fisher, L. Justice, W. Wood, J. Vetto, et al 2003. Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J. Clin. Oncol. 21: 1562-1573.
    OpenUrlAbstract/FREE Full Text
  30. ↵
    Overwijk, W. W., M. R. Theoret, S. E. Finkelstein, D. R. Surman, L. A. de Jong, F. A. Vyth-Dreese, T. A. Dellemijn, P. A. Antony, P. J. Spiess, D. C. Palmer, et al 2003. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198: 569-580.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    Muller, U., U. Steinhoff, L. F. Reis, S. Hemmi, J. Pavlovic, R. M. Zinkernagel, M. Aguet. 1994. Functional role of type I and type II interferons in antiviral defense. Science 264: 1918-1921.
    OpenUrlAbstract/FREE Full Text
  32. ↵
    Lodolce, J. P., D. L. Boone, S. Chai, R. E. Swain, T. Dassopoulos, S. Trettin, A. Ma. 1998. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9: 669-676.
    OpenUrlCrossRefPubMed
  33. ↵
    Kennedy, M. K., M. Glaccum, S. N. Brown, E. A. Butz, J. L. Viney, M. Embers, N. Matsuki, K. Charrier, L. Sedger, C. R. Willis, K. Brasel, P. J. Morrissey, K. Stocking, J. C. Schuh, S. Joyce, J. J. Peschon. 2000. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191: 771-780.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    Overwijk, W. W., A. Tsung, K. R. Irvine, M. R. Parkhurst, T. J. Goletz, K. Tsung, M. W. Carroll, C. Liu, B. Moss, S. A. Rosenberg, N. P. Restifo. 1998. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J. Exp. Med. 188: 277-286.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    Liu, F., Y. Song, D. Liu. 1999. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6: 1258-1266.
    OpenUrlCrossRefPubMed
  36. ↵
    Hughes, G. C., S. Thomas, C. Li, M. K. Kaja, E. A. Clark. 2008. Cutting edge: progesterone regulates IFN-α production by plasmacytoid dendritic cells. J. Immunol. 180: 2029-2033.
    OpenUrlAbstract/FREE Full Text
  37. ↵
    Lang, K. S., M. Recher, T. Junt, A. A. Navarini, N. L. Harris, S. Freigang, B. Odermatt, C. Conrad, L. M. Ittner, S. Bauer, et al 2005. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med. 11: 138-145.
    OpenUrlCrossRefPubMed
  38. ↵
    Marrack, P., J. Kappler, T. Mitchell. 1999. Type I interferons keep activated T cells alive. J. Exp. Med. 189: 521-530.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    Lee, K. H., E. Wang, M. B. Nielsen, J. Wunderlich, S. Migueles, M. Connors, S. M. Steinberg, S. A. Rosenberg, F. M. Marincola. 1999. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J. Immunol. 163: 6292-6300.
    OpenUrlAbstract/FREE Full Text
  40. ↵
    Callan, M. F., L. Tan, N. Annels, G. S. Ogg, J. D. Wilson, C. A. O'Callaghan, N. Steven, A. J. McMichael, A. B. Rickinson. 1998. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J. Exp. Med. 187: 1395-1402.
    OpenUrlAbstract/FREE Full Text
  41. ↵
    Wang, R. F.. 2006. Regulatory T cells and innate immune regulation in tumor immunity. Springer Semin. Immunopathol. 28: 17-23.
    OpenUrlCrossRefPubMed
  42. ↵
    Surh, C. D., O. Boyman, J. F. Purton, J. Sprent. 2006. Homeostasis of memory T cells. Immunol. Rev. 211: 154-163.
    OpenUrlCrossRefPubMed
  43. ↵
    van Stipdonk, M. J., G. Hardenberg, M. S. Bijker, E. E. Lemmens, N. M. Droin, D. R. Green, S. P. Schoenberger. 2003. Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol. 4: 361-365.
    OpenUrlCrossRefPubMed
  44. ↵
    Murali-Krishna, K., J. D. Altman, M. Suresh, D. J. Sourdive, A. J. Zajac, J. D. Miller, J. Slansky, R. Ahmed. 1998. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8: 177-187.
    OpenUrlCrossRefPubMed
  45. ↵
    Overwijk, W. W., K. E. de Visser, F. H. Tirion, L. A. de Jong, T. W. Pols, Y. U. van der Velden, J. G. van den Boorn, A. M. Keller, W. A. Buurman, M. R. Theoret, et al 2006. Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant. J. Immunol. 176: 5213-5222.
    OpenUrlAbstract/FREE Full Text
  46. ↵
    Maurer, M., E. von Stebut. 2004. Macrophage inflammatory protein-1. Int J. Biochem. Cell Biol. 36: 1882-1886.
    OpenUrlCrossRefPubMed
  47. ↵
    Smyth, M. J., Y. Norihisa, J. R. Ortaldo. 1992. Multiple cytolytic mechanisms displayed by activated human peripheral blood T cell subsets. J. Immunol. 148: 55-62.
    OpenUrlAbstract
  48. ↵
    Wodarz, D., P. Klenerman, M. A. Nowak. 1998. Dynamics of cytotoxic T-lymphocyte exhaustion. Proc. Biol. Sci. 265: 191-203.
    OpenUrlAbstract/FREE Full Text
  49. ↵
    Joshi, N. S., W. Cui, A. Chandele, H. K. Lee, D. R. Urso, J. Hagman, L. Gapin, S. M. Kaech. 2007. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27: 281-295.
    OpenUrlCrossRefPubMed
View Abstract
PreviousNext
Back to top

In this issue

The Journal of Immunology: 182 (12)
The Journal of Immunology
Vol. 182, Issue 12
15 Jun 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Advertising (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
IFN-α Enhances Peptide Vaccine-Induced CD8+ T Cell Numbers, Effector Function, and Antitumor Activity
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
IFN-α Enhances Peptide Vaccine-Induced CD8+ T Cell Numbers, Effector Function, and Antitumor Activity
Andrew G. Sikora, Nina Jaffarzad, Yared Hailemichael, Alexander Gelbard, Spencer W. Stonier, Kimberly S. Schluns, Loredana Frasca, Yanyan Lou, Chengwen Liu, Helen A. Andersson, Patrick Hwu, Willem W. Overwijk
The Journal of Immunology June 15, 2009, 182 (12) 7398-7407; DOI: 10.4049/jimmunol.0802982

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
IFN-α Enhances Peptide Vaccine-Induced CD8+ T Cell Numbers, Effector Function, and Antitumor Activity
Andrew G. Sikora, Nina Jaffarzad, Yared Hailemichael, Alexander Gelbard, Spencer W. Stonier, Kimberly S. Schluns, Loredana Frasca, Yanyan Lou, Chengwen Liu, Helen A. Andersson, Patrick Hwu, Willem W. Overwijk
The Journal of Immunology June 15, 2009, 182 (12) 7398-7407; DOI: 10.4049/jimmunol.0802982
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Disclosures
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Innate Immunity Together with Duration of Antigen Persistence Regulate Effector T Cell Induction
  • Regulatory Roles of IL-2 and IL-4 in H4/Inducible Costimulator Expression on Activated CD4+ T Cells During Th Cell Development
  • Induction of CD4+ T Cell Apoptosis as a Consequence of Impaired Cytoskeletal Rearrangement in UVB-Irradiated Dendritic Cells
Show more CELLULAR IMMUNOLOGY AND IMMUNE REGULATION

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606