Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

C-Reactive Protein Enhances Immunity to Streptococcus pneumoniae by Targeting Uptake to FcγR on Dendritic Cells

Deirdre Thomas-Rudolph, Terry W. Du Clos, Clifford M. Snapper and Carolyn Mold
J Immunol June 1, 2007, 178 (11) 7283-7291; DOI: https://doi.org/10.4049/jimmunol.178.11.7283
Deirdre Thomas-Rudolph
*Department of Molecular Genetics and Microbiology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terry W. Du Clos
†Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131;
‡Department of Veterans Affairs Medical Center, Albuquerque, NM 87108; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clifford M. Snapper
§Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carolyn Mold
*Department of Molecular Genetics and Microbiology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

C-reactive protein (CRP) is an acute phase reactant with roles in innate host defense, clearance of damaged cells, and regulation of the inflammatory response. These activities of CRP depend on ligand recognition, complement activation, and binding to FcγR. CRP binds to phosphocholine in the Streptococcus pneumoniae cell wall and provides innate defense against pneumococcal infection. These studies examine the effect of this early innate defense molecule on the development of Abs and protective immunity to S. pneumoniae. Dendritic cells (DC) initiate and direct the adaptive immune response by integrating innate stimuli with cytokine synthesis and Ag presentation. We hypothesized that CRP would direct uptake of S. pneumoniae to FcγR on DC and enhance Ag presentation. CRP opsonization of the R36a strain of S. pneumoniae increased the uptake of bacteria by DC. DC pulsed with untreated or CRP-opsonized R36a were transferred into recipient mice, and Ab responses were measured. In mice challenged with free R36a, CRP opsonization resulted in higher secondary and memory IgG responses to both phosphocholine and pneumococcal surface protein A. Furthermore, mice immunized with DC that had been pulsed with CRP-opsonized R36a showed increased resistance to intranasal infection with virulent S. pneumoniae. The effects of CRP on Ag uptake, Ab responses, and protection from infection all required FcR γ-chain expression on DC. The results indicate that innate recognition by CRP enhances effective uptake and presentation of bacterial Ags through FcγR on DC and stimulates protective adaptive immunity.

  • Received February 8, 2007.
  • Accepted March 21, 2007.
  • Copyright © 2007 by The American Association of Immunologists
View Full Text
PreviousNext
Back to top

In this issue

The Journal of Immunology: 178 (11)
The Journal of Immunology
Vol. 178, Issue 11
1 Jun 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Advertising (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
C-Reactive Protein Enhances Immunity to Streptococcus pneumoniae by Targeting Uptake to FcγR on Dendritic Cells
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
C-Reactive Protein Enhances Immunity to Streptococcus pneumoniae by Targeting Uptake to FcγR on Dendritic Cells
Deirdre Thomas-Rudolph, Terry W. Du Clos, Clifford M. Snapper, Carolyn Mold
The Journal of Immunology June 1, 2007, 178 (11) 7283-7291; DOI: 10.4049/jimmunol.178.11.7283

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
C-Reactive Protein Enhances Immunity to Streptococcus pneumoniae by Targeting Uptake to FcγR on Dendritic Cells
Deirdre Thomas-Rudolph, Terry W. Du Clos, Clifford M. Snapper, Carolyn Mold
The Journal of Immunology June 1, 2007, 178 (11) 7283-7291; DOI: 10.4049/jimmunol.178.11.7283
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Disclosures
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Early Self-Regulatory Mechanisms Control the Magnitude of CD8+ T Cell Responses Against Liver Stages of Murine Malaria
  • Sublethal Hyperoxia Impairs Pulmonary Innate Immunity
  • Dependence of IL-4, IL-13, and Nematode-Induced Alterations in Murine Small Intestinal Smooth Muscle Contractility on Stat6 and Enteric Nerves
Show more HOST DEFENSE

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606