Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Cutting Edge: Bacterial DNA and LPS Act in Synergy in Inducing Nitric Oxide Production in RAW 264.7 Macrophages

Jian Jun Gao, Eleanor G. Zuvanich, Qiao Xue, David L. Horn, Richard Silverstein and David C. Morrison
J Immunol October 15, 1999, 163 (8) 4095-4099;
Jian Jun Gao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eleanor G. Zuvanich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qiao Xue
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David L. Horn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard Silverstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David C. Morrison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

LPS is well recognized for its potent capacity to activate mouse macrophages to produce NO, an important inflammatory mediator in innate host defense. We demonstrate here that, although inducing little NO alone, DNA from both Gram-negative and Gram-positive bacteria synergizes with subthreshold concentrations of LPS (0.3 ng/ml) to induce NO in cultures of RAW 264.7 macrophages. The effects of the DNA are mimicked by synthetic CpG-containing oligodeoxynucleotides but not by non-CpG-containing oligodeoxynucleotides. This synergistic activity is not inhibited by neutralizing Abs against IFN. Preincubation of macrophages with DNA for 8–24 h suppresses subsequent synergistic macrophage responses to DNA/LPS, whereas prolonged pretreatment with LPS enhances synergy. RT-PCR analysis indicates that the mRNA levels of the inducible NO synthase gene are also coordinately suppressed or induced. These findings indicate that temporally controlled, synergistic interactions exist between microbial DNA and LPS in the induction of macrophage NO via enhanced inducible NO synthase gene expression.

  • Received June 29, 1999.
  • Accepted August 16, 1999.
  • Copyright © 1999 by The American Association of Immunologists
View Full Text
PreviousNext
Back to top

In this issue

The Journal of Immunology: 163 (8)
The Journal of Immunology
Vol. 163, Issue 8
15 Oct 1999
  • Table of Contents
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cutting Edge: Bacterial DNA and LPS Act in Synergy in Inducing Nitric Oxide Production in RAW 264.7 Macrophages
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cutting Edge: Bacterial DNA and LPS Act in Synergy in Inducing Nitric Oxide Production in RAW 264.7 Macrophages
Jian Jun Gao, Eleanor G. Zuvanich, Qiao Xue, David L. Horn, Richard Silverstein, David C. Morrison
The Journal of Immunology October 15, 1999, 163 (8) 4095-4099;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Cutting Edge: Bacterial DNA and LPS Act in Synergy in Inducing Nitric Oxide Production in RAW 264.7 Macrophages
Jian Jun Gao, Eleanor G. Zuvanich, Qiao Xue, David L. Horn, Richard Silverstein, David C. Morrison
The Journal of Immunology October 15, 1999, 163 (8) 4095-4099;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cutting Edge: Hypoxia-Induced Ubc9 Promoter Hypermethylation Regulates IL-17 Expression in Ulcerative Colitis
  • Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses
  • Cutting Edge: Heterogeneity in Cell Age Contributes to Functional Diversity of NK Cells
Show more CUTTING EDGE

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606