Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Suppression of TNF-alpha secretion by azelastine in a rat mast (RBL-2H3) cell line: evidence for differential regulation of TNF-alpha release, transcription, and degranulation.

I Hide, N Toriu, T Nuibe, A Inoue, M Hide, S Yamamoto and Y Nakata
J Immunol September 15, 1997, 159 (6) 2932-2940;
I Hide
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Toriu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Nuibe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Inoue
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Hide
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Yamamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Nakata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The mast cell plays a pivotal role in initiating allergic inflammation by secreting several cytokines including TNF-alpha, in addition to granule mediators such as histamine. Anti-allergic drugs including azelastine prevent immediate-type hypersensitivity by inhibiting mast cell degranulation, as well as blocking histamine H1 receptors. However, their effects on cytokine release from mast cells remain unknown. In a rat mast RBL-2H3 cell line, azelastine inhibited Ag- and ionomycin-induced TNF-alpha release with IC50 values of 25.7 +/- 3.4 microM and 1.66 +/- 0.45 microM, respectively. These effects were observed at lower concentrations than needed for the inhibition of degranulation. In Ag-stimulated cells, azelastine also inhibited TNF-alpha mRNA expression, TNF-alpha protein synthesis and release, and, possibly related to these effects, Ca2+ influx. In ionomycin-stimulated cells, however, azelastine inhibited TNF-alpha release to a greater extent than mRNA expression/protein synthesis and Ca2+ influx, suggesting that azelastine inhibits the release process more potently than transcription or production of TNF-alpha by interfering with a signal other than Ca2+. Azelastine added 1 h after ionomycin stimulation also immediately blocked subsequent release of TNF-alpha, which had been produced in the cells, without affecting Ca2+ influx. Pretreatment with 1 microM azelastine inhibited ionomycin-induced, but not Ag-induced, protein kinase C translocation to the membranes. These results suggest that the release process of TNF-alpha in mast cells is regulated by a mechanism distinct from that of degranulation, and that in Ca2+-ionophore-stimulated cells, it is also different from that of transcription/production, and possibly involves protein kinase C activation.

  • Copyright © 1997 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 159, Issue 6
15 Sep 1997
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Suppression of TNF-alpha secretion by azelastine in a rat mast (RBL-2H3) cell line: evidence for differential regulation of TNF-alpha release, transcription, and degranulation.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Suppression of TNF-alpha secretion by azelastine in a rat mast (RBL-2H3) cell line: evidence for differential regulation of TNF-alpha release, transcription, and degranulation.
I Hide, N Toriu, T Nuibe, A Inoue, M Hide, S Yamamoto, Y Nakata
The Journal of Immunology September 15, 1997, 159 (6) 2932-2940;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Suppression of TNF-alpha secretion by azelastine in a rat mast (RBL-2H3) cell line: evidence for differential regulation of TNF-alpha release, transcription, and degranulation.
I Hide, N Toriu, T Nuibe, A Inoue, M Hide, S Yamamoto, Y Nakata
The Journal of Immunology September 15, 1997, 159 (6) 2932-2940;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606