Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners.

A R Burns, D C Walker, E S Brown, L T Thurmon, R A Bowden, C R Keese, S I Simon, M L Entman and C W Smith
J Immunol September 15, 1997, 159 (6) 2893-2903;
A R Burns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D C Walker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E S Brown
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L T Thurmon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Bowden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C R Keese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S I Simon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M L Entman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C W Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Since macromolecular permeability between endothelial cells is regulated by tight junctions (zonula occludens), we wished to determine whether they also regulate neutrophil transendothelial migration. HUVEC monolayers, a commonly used model for studying leukocyte transmigration, were characterized using electric cell substrate impedance sensing and transmission electron microscopy. We show that culture medium containing endothelial cell growth supplement (50 microg/ml) was sufficient and necessary for the development of endothelial tight junctions. The frequency with which tight junctions were observed by transmission electron microscopy was further increased (twofold) by culturing HUVEC monolayers in a 1:1 mixture of endothelial medium and astrocyte-conditioned medium. These astrocyte-conditioned HUVEC monolayers showed a >1.5-fold increase in transcellular electrical resistance. The extent of neutrophil migration across IL-1-treated (10 U/ml for 4 h) HUVEC monolayers was the same whether tight junctions were present or absent, and the molecular requirements for neutrophil transmigration (CD18 and intercellular adhesion molecule-1) were unaffected by culturing in astrocyte-conditioned medium. Immunostaining for proteins associated with the intercellular junctional domain (occludin, ZO-1, cadherin, beta-catenin, gamma-catenin, and platelet-endothelial cell adhesion molecule-1) was localized to the endothelial borders, regardless of the culture conditions. Discontinuities were observed in the border staining for occludin, ZO-1, cadherin, and beta-catenin at the tricellular corner where the borders of three endothelial cells intersected. Significantly, 75% of neutrophil migration across IL-1-treated HUVEC monolayers occurred at tricellular corners. It appears that neutrophils preferentially migrate around endothelial tight junctions by crossing at tricellular corners rather than passing through the tight junctions that lie between two endothelial cells.

  • Copyright © 1997 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 159, Issue 6
15 Sep 1997
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners.
A R Burns, D C Walker, E S Brown, L T Thurmon, R A Bowden, C R Keese, S I Simon, M L Entman, C W Smith
The Journal of Immunology September 15, 1997, 159 (6) 2893-2903;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners.
A R Burns, D C Walker, E S Brown, L T Thurmon, R A Bowden, C R Keese, S I Simon, M L Entman, C W Smith
The Journal of Immunology September 15, 1997, 159 (6) 2893-2903;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606