Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Heat shock protein 65 induced by gammadelta T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii.

H Hisaeda, T Sakai, H Ishikawa, Y Maekawa, K Yasutomo, R A Good and K Himeno
J Immunol September 1, 1997, 159 (5) 2375-2381;
H Hisaeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Sakai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Ishikawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Maekawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Yasutomo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Good
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Himeno
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We previously reported that gammadelta T cells mediate the expression of endogenous heat shock protein 65 (HSP65) in macrophages of mice with acquired resistance against infection with Toxoplasma gondii. We show here that HSP65 contributes to protective immunity by preventing apoptosis of infected macrophages. Macrophages of BALB/c mice, which readily acquired resistance to T. gondii infection with the low virulence Beverley strain, strongly expressed HSP65, and only a few of these macrophages underwent apoptosis. On the other hand, the BALB/c mice were susceptible to the infection with the high virulence RH strain of T. gondii; their macrophages did not express HSP65 and did undergo apoptosis. Mice depleted of gammadelta T cells using a mAb specific for TCR-gammadelta became highly susceptible to infection even with the Beverley strain. In these mice, HSP65 expression was markedly suppressed, and their infected macrophages died via apoptosis. Apoptosis was induced in cultured macrophages or macrophage cell lines after infection in vitro with the RH strain, whereas apoptosis was prevented when HSP65 was induced in these cells, before infection, by activation with IFN-gamma and TNF-alpha. However, apoptosis associated with infection by T. gondii RH strain was not prevented when HSP65 synthesis was inhibited by introducing an antisense oligonucleotide for this protein into the cells before activation with IFN-gamma plus TNF-alpha. Thus, HSP65 appears to contribute to immunity by preventing the apoptosis of infected macrophages, and the high virulence Toxoplasma appears to have mechanisms that allow these organisms to evade the host defense system by interfering with HSP65 expression.

  • Copyright © 1997 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 159, Issue 5
1 Sep 1997
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Heat shock protein 65 induced by gammadelta T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Heat shock protein 65 induced by gammadelta T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii.
H Hisaeda, T Sakai, H Ishikawa, Y Maekawa, K Yasutomo, R A Good, K Himeno
The Journal of Immunology September 1, 1997, 159 (5) 2375-2381;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Heat shock protein 65 induced by gammadelta T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii.
H Hisaeda, T Sakai, H Ishikawa, Y Maekawa, K Yasutomo, R A Good, K Himeno
The Journal of Immunology September 1, 1997, 159 (5) 2375-2381;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606