Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Bacterial lipoprotein and lipopolysaccharide act synergistically to induce lethal shock and proinflammatory cytokine production.

H Zhang, J W Peterson, D W Niesel and G R Klimpel
J Immunol November 15, 1997, 159 (10) 4868-4878;
H Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J W Peterson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D W Niesel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G R Klimpel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Septic shock is a major cause of death in the world. Although much is known about the role of LPS in septic shock, little is known about the role of other bacterial components. Lipoprotein (LP) is a major component of bacteria in the family Enterobacteriaceae. LP purified from Escherichia coli was shown to induce TNF-alpha and IL-6 production in peritoneal exudate macrophages obtained from LPS-responsive (C3H/HeOuJ) and LPS-nonresponsive (C3H/HeJ) mice. LP and LPS acted synergistically to induce cytokine production not only in C3H/HeOuJ macrophages but also in C3H/HeJ macrophages. These results suggest that LPS can induce cellular signaling in C3H/HeJ macrophages, and that LPS and LP activate macrophages via different receptors and/or signaling pathways. The role LP plays in septic shock was investigated using the mouse D-galactosamine model. LP induced lethal shock and in vivo production of TNF-alpha and IL-6 in both LPS-responsive and LPS-nonresponsive mice. LPS failed to induce lethal shock or in vivo cytokine production in C3H/HeJ mice. However, LP and LPS acted synergistically in inducing lethal shock and in vivo cytokine production in both LPS-responsive and LPS-nonresponsive mice. Finally, a heat-killed preparation of an E. coli mutant strain that lacked LP was shown to be less efficient than heat-killed wild-type E. coli at inducing lethal shock in C3H/HeJ mice. Collectively, these results suggest that LP and LPS induce cytokine production via different mechanisms and that LP plays an important role in septic shock induced by bacteria in the family Enterobacteriaceae.

  • Copyright © 1997 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 159, Issue 10
15 Nov 1997
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Bacterial lipoprotein and lipopolysaccharide act synergistically to induce lethal shock and proinflammatory cytokine production.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Bacterial lipoprotein and lipopolysaccharide act synergistically to induce lethal shock and proinflammatory cytokine production.
H Zhang, J W Peterson, D W Niesel, G R Klimpel
The Journal of Immunology November 15, 1997, 159 (10) 4868-4878;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Bacterial lipoprotein and lipopolysaccharide act synergistically to induce lethal shock and proinflammatory cytokine production.
H Zhang, J W Peterson, D W Niesel, G R Klimpel
The Journal of Immunology November 15, 1997, 159 (10) 4868-4878;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606