Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis.

A Macho, T Hirsch, I Marzo, P Marchetti, B Dallaporta, S A Susin, N Zamzami and G Kroemer
J Immunol May 15, 1997, 158 (10) 4612-4619;
A Macho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Hirsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I Marzo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Marchetti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Dallaporta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S A Susin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Zamzami
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Kroemer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

According to current understanding, several metabolic alterations form part of the common phase of the apoptosis process. Such alterations include a disruption of the mitochondrial transmembrane potential (delta psi(m)), a depletion of nonoxidized glutathione (GSH) levels, an increase in the production of reactive oxygen species (ROS), and an elevation in cytosolic free Ca2+ levels. Using a cytofluorometric approach, we have determined each of these parameters at the single cell level in thymocytes or T cell hybridoma cells undergoing apoptosis. Regardless of the apoptosis induction protocol (glucocorticoids, DNA damage, Fas cross-linking, or CD3epsilon cross-linking), cells manifest a near-to-simultaneous delta psi(m) dissipation and GSH depletion early during the apoptotic process. None of the protocols for apoptosis inhibition (antioxidants, delta psi(m) stabilization, Bcl-2 hyperexpression, or inhibition of IL-1-converting enzyme) allowed for the dissociation of delta psi(m) disruption and GSH depletion, indicating that both parameters are closely associated with each other. At a later stage of the apoptotic process, cells manifest a near-simultaneous increase in ROS production and intracellular Ca2+ levels. Whereas the thapsigargin- or ionophore-induced elevation of calcium levels has no immediate consequence on delta psi(m') cellular redox potentials, or ROS production, pro-oxidants and menadione, an inducer of mitochondrial superoxide anion generation, cause a rapid (15 min) Ca2+ elevation. Together, these data suggest a two-step model of the common phase of apoptosis. After an initial delta psi(m) dissipation linked to GSH depletion (step 1), cells hyperproduce ROS with an associated disruption of Ca2+ homeostasis (step 2).

  • Copyright © 1997 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 158, Issue 10
15 May 1997
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis.
A Macho, T Hirsch, I Marzo, P Marchetti, B Dallaporta, S A Susin, N Zamzami, G Kroemer
The Journal of Immunology May 15, 1997, 158 (10) 4612-4619;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis.
A Macho, T Hirsch, I Marzo, P Marchetti, B Dallaporta, S A Susin, N Zamzami, G Kroemer
The Journal of Immunology May 15, 1997, 158 (10) 4612-4619;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606