Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Mouse decay-accelerating factor: selective and tissue-specific induction by estrogen of the gene encoding the glycosylphosphatidylinositol-anchored form.

W C Song, C Deng, K Raszmann, R Moore, R Newbold, J A McLachlan and M Negishi
J Immunol November 1, 1996, 157 (9) 4166-4172;
W C Song
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Deng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Raszmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Moore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Newbold
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J A McLachlan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Negishi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Neonatal exposure of mice to estrogen (diethylstilbestrol) results in a high incidence (90%) of uterine tumor later in life. In an effort to screen for estrogen-regulated genes in the uterus of the neonatal mouse, we have isolated a murine homologue of the human decay-accelerating factor (DAF), a glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein and a member of the regulators of complement activation family of proteins that function to prevent autologous complement-mediated tissue damage. The induced mouse DAF cDNA has a 64% sequence identity with the human counterpart at the nucleotide level and a 50% identity in the deduced amino acid sequence. It consists of 390 amino acids and contains four short consensus repeats of internal homology characteristic of human DAF. It also contains a hydrophobic C-terminal that most likely serves as a signal for GPI anchor attachment. Sequence comparison with the recently reported mouse DAF cDNAs confirmed that the estrogen-inducible gene corresponds to the mouse GPI DAF gene. The induction of mouse DAF by estrogen is tissue specific and can be mimicked by the antiestrogen tamoxifen. Furthermore, the regulation of uterine DAF expression by estrogen is limited to the GPI DAF gene. The transmembrane DAF gene is not expressed in the mouse uterus, either with or without estrogen stimulation. These results suggest that the two mouse DAF genes are differentially regulated, and that the GPI-anchored DAF may play important roles in estrogen responses and other physiologic or pathophysiologic processes of the female reproductive system.

  • Copyright © 1996 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 157, Issue 9
1 Nov 1996
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mouse decay-accelerating factor: selective and tissue-specific induction by estrogen of the gene encoding the glycosylphosphatidylinositol-anchored form.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mouse decay-accelerating factor: selective and tissue-specific induction by estrogen of the gene encoding the glycosylphosphatidylinositol-anchored form.
W C Song, C Deng, K Raszmann, R Moore, R Newbold, J A McLachlan, M Negishi
The Journal of Immunology November 1, 1996, 157 (9) 4166-4172;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Mouse decay-accelerating factor: selective and tissue-specific induction by estrogen of the gene encoding the glycosylphosphatidylinositol-anchored form.
W C Song, C Deng, K Raszmann, R Moore, R Newbold, J A McLachlan, M Negishi
The Journal of Immunology November 1, 1996, 157 (9) 4166-4172;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606