Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Structure-function analysis of Leishmania lipophosphoglycan. Distinct domains that mediate binding and inhibition of endothelial cell function.

J L Ho, H K Kim, P M Sass, S He, J Geng, H Xu, B Zhu, S J Turco and S K Lo
J Immunol October 1, 1996, 157 (7) 3013-3020;
J L Ho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H K Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P M Sass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S He
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Geng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Xu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Zhu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S J Turco
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S K Lo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We have shown that Leishmania lipophosphoglycan (LPG) inhibits IL-1 beta gene expression in human monocytes. Here, we show that LPG can bind in a time-dependent manner and suppress endothelial cell activation, possibly via specific LPG domains. Endotoxin (10 ng/ml, 4 h) consistently caused endothelium to increase monocyte adhesion (approximately 20-fold). LPG pretreatment (2 microM, 2 h) completely blocked endotoxin-mediated monocyte adhesion. LPG did not grossly suppress endothelial functions because TNF-alpha- and IL-1 beta-mediated adhesion toward monocytes were not affected. Using four highly purified LPG fragments (namely, repeating phosphodisaccharide (PGM), phosphoglycan, phosphosaccharide core-lyso-alkyl-phosphatidylinositol (core-PI), and lyso-alkyl-phosphatidylinositol (lyso-PI)), we examined whether these fragments can independently inhibit endothelial adhesion. In contrast to that of intact LPG, neither the four LPG fragments (2 microM, 2 h) independently nor the co-addition of phosphoglycan and core-P1 fragments blocked the endotoxin-mediated adhesion to monocytes. To determine whether the fragments can reverse the effect of intact LPG, endothelial cells were first pretreated with the LPG fragments (10 microM, 15 min), followed by the addition of LPG (2 microM). All four LPG fragments fully reversed the effect of LPG. Simultaneous addition of LPG fragments and intact LPG caused only partial suppression (approximately 45%), while the addition of LPG fragments 14 min later had no reversal effect. Flow cytometry revealed that only core-P1 and lyso-P1 competitively inhibited (approximately 30%) LPG binding. Conversely, LPG competed with the binding of [3H]lyso-P1 (approximately 30%). Furthermore, mAb against the PGM reversed (approximately 70%) the effect of LPG. Thus, the lyso-P1 domain on LPG mediates binding to endothelial cells, whereas the PGM domain mediates the cell inhibitory effect.

  • Copyright © 1996 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 157, Issue 7
1 Oct 1996
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Structure-function analysis of Leishmania lipophosphoglycan. Distinct domains that mediate binding and inhibition of endothelial cell function.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Structure-function analysis of Leishmania lipophosphoglycan. Distinct domains that mediate binding and inhibition of endothelial cell function.
J L Ho, H K Kim, P M Sass, S He, J Geng, H Xu, B Zhu, S J Turco, S K Lo
The Journal of Immunology October 1, 1996, 157 (7) 3013-3020;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Structure-function analysis of Leishmania lipophosphoglycan. Distinct domains that mediate binding and inhibition of endothelial cell function.
J L Ho, H K Kim, P M Sass, S He, J Geng, H Xu, B Zhu, S J Turco, S K Lo
The Journal of Immunology October 1, 1996, 157 (7) 3013-3020;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606