Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Monkeypox and Other Poxvirus Articles
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Monkeypox and Other Poxvirus Articles
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.

M Okumura, R J Matthews, B Robb, G W Litman, P Bork and M L Thomas
J Immunol August 15, 1996, 157 (4) 1569-1575;
M Okumura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R J Matthews
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Robb
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G W Litman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Bork
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M L Thomas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Mammalian CD45 is a transmembrane protein tyrosine phosphatase expressed by all nucleated cells of hematopoietic origin. In lymphocytes, CD45 is required for Ag-induced signal transduction due to its ability to positively regulate Src family members. The mechanisms by which CD45 function is regulated are unknown. Indeed, the interactions of CD45 extracellular domains are largely undefined. To gain insight into potentially important regions of the extracellular domain, we sought to identify conserved features from divergent species. cDNAs encoding the putative CD45 homologue from Heterodontus francisci (horned shark) were isolated. The cDNA sequence predicts a protein of 1200 amino acids that contains a 452-amino acid extracellular domain, a 22-amino acid transmembrane region, and a 703-amino acid cytoplasmic domain. Alignment searches revealed that the Heterodontus cytoplasmic domain sequence was most identical to mammalian CD45 and a transmembrane protein tyrosine phosphatase sequence identified from chickens, ChPTP lambda. A dendrogram with other transmembrane protein tyrosine phosphatase sequences suggest that the Heterodontus and chicken sequences represents CD45 orthologues for their respective species. Analysis of vertebrate CD45 extracellular domain sequences indicates the conservation of three structural regions: a region containing potential O-linked carbohydrate sites, a cysteine-containing region, and a region containing three fibronectin type III domains. For each vertebrate species, multiple isoforms are generated by alternative splicing of three exons that encode a portion of the region containing potential O-linked glycosylation sites. These studies provide evidence for a conservation in CD45 extracellular domain structure between divergent species and provide a basis for understanding CD45 extracellular domain interactions.

  • Copyright © 1996 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 157, Issue 4
15 Aug 1996
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.
M Okumura, R J Matthews, B Robb, G W Litman, P Bork, M L Thomas
The Journal of Immunology August 15, 1996, 157 (4) 1569-1575;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.
M Okumura, R J Matthews, B Robb, G W Litman, P Bork, M L Thomas
The Journal of Immunology August 15, 1996, 157 (4) 1569-1575;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606