Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway.

H D Um, J M Orenstein and S M Wahl
J Immunol May 1, 1996, 156 (9) 3469-3477;
H D Um
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Orenstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S M Wahl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Monocyte apoptosis has emerged as a central regulatory event in hemopoiesis and inflammation. Inflammatory cytokines can either promote or prevent monocyte apoptosis. To study the possible role of Fas Ag, a member of the TNF/nerve growth factor receptor family, in monocyte apoptosis, human peripheral blood monocytes activated by IL-1 beta or TNF-alpha were exposed to anti-Fas mAb. Engagement of the Fas Ag resulted in apoptosis of monocytes, as monitored by propidium iodide uptake, decrease in cell size, DNA fragmentation, and characteristic ultrastructural changes. The apoptotic action of Fas was abolished completely by antioxidants such as N-acetylcysteine and glutathione, suggesting a role for reactive oxygen intermediates (ROI) in the death process. Consistent with this observation, Fas stimulation enhanced the fluorescence associated with oxidation of 2',7'-dichlorofluorescein, indicating increased levels of intracellular ROI. Moreover, the exogenous addition of hydrogen peroxide or menadione, an intracellular generator of superoxide anion, was sufficient for the induction of monocyte apoptosis. These data indicate that ROI are key mediators of Fas-induced apoptosis. In contrast to IL-1 beta and TNF-alpha, LPS-treated monocytes were resistant to the apoptotic action of Fas. Under these conditions, LPS did not down-regulate Fas, but inhibited the Fas-dependent elevation of ROI. Therefore, monocytes appear to have a protective mechanism that can interfere directly with the Fas-induced pathway of cell suicide, thereby controlling their destiny.

  • Copyright © 1996 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 156, Issue 9
1 May 1996
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway.
H D Um, J M Orenstein, S M Wahl
The Journal of Immunology May 1, 1996, 156 (9) 3469-3477;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway.
H D Um, J M Orenstein, S M Wahl
The Journal of Immunology May 1, 1996, 156 (9) 3469-3477;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606