Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

The serine/threonine phosphatase inhibitor, calyculin A, inhibits and dissociates macrophage responses to lipopolysaccharide.

S A Barber, P Y Perera, R McNally and S N Vogel
J Immunol August 1, 1995, 155 (3) 1404-1410;
S A Barber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Y Perera
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R McNally
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S N Vogel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

LPS-stimulated macrophages (M phi) produce inflammatory mediators that are largely responsible for the pathophysiology associated with septic shock. M phi respond to LPS with rapid protein phosphorylation and dephosphorylation on serine, threonine, and tyrosine residues. If these events are critical for the cellular response to LPS, the kinases and/or phosphatases involved may be vulnerable targets for pharmacologic intervention. Recent studies demonstrated that tyrosine kinase inhibitors block LPS-induced tyrosine phosphorylation of MAP kinases as well as TNF-alpha and IL-1 beta production. To investigate a role for serine/threonine phosphatases, we evaluated the effect of calyculin A, a potent serine/threonine phosphatase inhibitor, on LPS stimulation of murine M phi. Pretreatment of M phi with calyculin A inhibited LPS-induced expression of six immediate-early genes: TNF-alpha, IL-1 beta, IFN-beta, IP-10, IRF-1, and TNFR-2. Calyculin A added 1.5 h after LPS treatment greatly reduced accumulation of IP-10, IRF-1, and TNFR-2 mRNA, but not TNF-alpha, IL-1 beta, and IFN-beta mRNA. Calyculin A, in the absence or presence of LPS, resulted in sustained tyrosine phosphorylation of the MAP kinases. These findings suggest that an "early" serine/threonine phosphatase activity is essential for LPS stimulation of M phi and that the activation of MAP kinases is not sufficient for the induction of these immediate-early genes. The requirement for a "late" phosphatase activity for expression of a subset of LPS-inducible genes dissociates at least two regulatory pathways in LPS signal transduction.

  • Copyright © 1995 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 155, Issue 3
1 Aug 1995
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The serine/threonine phosphatase inhibitor, calyculin A, inhibits and dissociates macrophage responses to lipopolysaccharide.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The serine/threonine phosphatase inhibitor, calyculin A, inhibits and dissociates macrophage responses to lipopolysaccharide.
S A Barber, P Y Perera, R McNally, S N Vogel
The Journal of Immunology August 1, 1995, 155 (3) 1404-1410;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The serine/threonine phosphatase inhibitor, calyculin A, inhibits and dissociates macrophage responses to lipopolysaccharide.
S A Barber, P Y Perera, R McNally, S N Vogel
The Journal of Immunology August 1, 1995, 155 (3) 1404-1410;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606