Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Characterization of fibroblasts with a unique defect in processing antigens with disulfide bonds.

B J Merkel, R Mandel, H J Ryser and K L McCoy
J Immunol January 1, 1995, 154 (1) 128-136;
B J Merkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Mandel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H J Ryser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K L McCoy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

A chinese hamster ovary (CHO) fibroblast, transfected with murine MHC class II genes, inefficiently stimulated CD4+ Th cells specific for OVA, hen egg lysozyme (HEL), and pork insulin which contain disulfide bonds. However, the fibroblasts elicited a T cell response to lambda repressor, which lacks disulfide bonds, and efficiently presented synthetic peptides. A somatic cell hybrid WALC, generated by fusing the hamster fibroblast with a murine L cell fibroblast, very efficiently processed OVA and HEL, suggesting that impaired processing was genetically complemented and was a recessive trait. The hamster fibroblasts were capable of processing two distinct denatured forms of OVA and carboxymethylated HEL, either as effectively or more efficiently than the B lymphoma cell. The CHO cells also displayed diminished disulfide reduction of an endocytosed [125I]tyramine linked to poly-(D-lysine) through a disulfide spacer compared with that of the cell hybrid, providing direct evidence for defective reductive cleavage by the CHO cells. Diminished aspartic acid-mediated proteolysis of Ag could not account for the phenotype, because cell lysates and separated organelles from the fibroblast possessed higher acidic aspartyl proteolytic activity than lysates and organelles from a B lymphoma cell. Thus, CHO cells exhibit a defect in processing Ag with disulfide bonds which is consistent with the impaired intracellular reduction of the disulfide bonds in endocytosed macromolecules.

  • Copyright © 1995 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 154, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of fibroblasts with a unique defect in processing antigens with disulfide bonds.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Characterization of fibroblasts with a unique defect in processing antigens with disulfide bonds.
B J Merkel, R Mandel, H J Ryser, K L McCoy
The Journal of Immunology January 1, 1995, 154 (1) 128-136;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Characterization of fibroblasts with a unique defect in processing antigens with disulfide bonds.
B J Merkel, R Mandel, H J Ryser, K L McCoy
The Journal of Immunology January 1, 1995, 154 (1) 128-136;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606