Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis.

G D Sempowski, M P Beckmann, S Derdak and R P Phipps
J Immunol April 1, 1994, 152 (7) 3606-3614;
G D Sempowski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M P Beckmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Derdak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R P Phipps
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The purpose of this study was to determine whether or not membrane-bound and soluble forms of IL-4 receptors are expressed by isolated subsets of murine lung fibroblasts and to evaluate the potential functional consequences of IL-4 receptor triggering. Recent studies demonstrate that IL-4-synthesizing Th2 cells and mast cells are present in increased numbers in the lung during inflammation and fibrosis, suggesting that IL-4 may play a regulatory role in these events. We hypothesize that pulmonary fibroblasts and subsets thereof are intimately involved in this inflammatory response and that IL-4 is an active player in stimulating fibroblast collagen synthesis and hyperproliferation, creating a fibrotic environment in the lung. The fibroblast subsets used in these experiments differ not only in surface expression of the thymocyte-1 (Thy-1) Ag, but also in function and morphology. We now report the novel finding that IL-4 receptors are present at discordant levels on Thy-1+ and Thy-1- lung fibroblasts. IL-4R level and affinity were analyzed using a monoclonal anti-IL-4R Ab and equilibrium binding analysis with 125I-labeled IL-4. Reverse transcriptase PCR demonstrated the presence of mRNA for membrane-bound and soluble IL-4R. Lung fibroblast subsets secrete soluble IL-4R protein at dramatically different levels, as detected by an ELISA. Thy-1+ and Thy-1- lung fibroblasts were treated with IL-4 to determine whether this cytokine was profibrotic. Thy-1+ fibroblasts responded to IL-4 by proliferating and up-regulating collagen production. In contrast, Thy-1- fibroblasts proliferate to a lesser degree than Thy-1+ fibroblasts and were not stimulated to secrete increased levels of collagen. Overall, these results suggest that elevated levels of IL-4 at a site of injury could result in the development of fibrosis by enhancing fibroblast subset proliferation and collagen synthesis.

  • Copyright © 1994 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 152, Issue 7
1 Apr 1994
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis.
G D Sempowski, M P Beckmann, S Derdak, R P Phipps
The Journal of Immunology April 1, 1994, 152 (7) 3606-3614;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis.
G D Sempowski, M P Beckmann, S Derdak, R P Phipps
The Journal of Immunology April 1, 1994, 152 (7) 3606-3614;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606