Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding.

R B Adams, S M Planchon and J K Roche
J Immunol March 15, 1993, 150 (6) 2356-2363;
R B Adams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S M Planchon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J K Roche
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The single cell-thick intestinal epithelium forms a crucial barrier between the host and environment, and is modeled in vitro by a monolayer of polarized, highly differentiated T84 epithelial cells impermeable to most macromolecules because of functional intercellular tight junctions. Absence of a permeability defect across the monolayer, either transcellular or paracellular, is indicated by development of a transepithelial electrical resistance of > or = 1000 ohm-cm2, reported to be markedly diminished by exposure to a T lymphocyte cytokine, IFN-gamma. We sought to define this phenomenon in four ways by determining its duration and reversibility; the uniqueness of type II (gamma) IFN as opposed to type I (alpha) IFN; the surface of the polarized columnar epithelium likely involved in responding to IFN-gamma; and whether a specific surface membrane receptor on the epithelial cell participates in the response. Using a special apparatus that allows differential cytokine exposure of monolayer surfaces, our data demonstrate 1) only the monolayer's basolateral surface is IFN-gamma responsive, whereas the apical (microvillous) surface is no; 2) the alteration in electrical resistance of epithelium is prolonged (5 days), even after a single (24 h) exposure to IFN-gamma, but nevertheless is reversible; 3) the effect is likely receptor-ligand mediated, because it can be partially blocked by IFN-gamma receptor-specific monoclonal Ig; 4) an alteration in tight junction function (a paracellular pathway) rather than cell necrosis or a transcellular pathway is responsible for IFN-gamma-induced monolayer dysfunction because permeability to a 44,000-Da macromolecule (horseradish peroxidase) did not increase, and intracytoplasmic T84 cell enzymes were not released into the media; and 5) the biologic phenomenon could not be induced by a species (alpha) of class I IFN, making IFN-gamma reasonably unique in this regard. Given the proximity; activation status, and capacity of T lymphocytes for cytokine production in mucosa, we suggest that IFN-gamma-induced changes in epithelial permeability may be a major cause of altered intestinal barrier function in vivo.

  • Copyright © 1993 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 150, Issue 6
15 Mar 1993
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding.
R B Adams, S M Planchon, J K Roche
The Journal of Immunology March 15, 1993, 150 (6) 2356-2363;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding.
R B Adams, S M Planchon, J K Roche
The Journal of Immunology March 15, 1993, 150 (6) 2356-2363;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606