Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Clonal analysis of a human antibody response. II. Sequences of the VH genes of human IgM, IgG, and IgA to rabies virus reveal preferential utilization of VHIII segments and somatic hypermutation.

H Ikematsu, N Harindranath, Y Ueki, A L Notkins and P Casali
J Immunol February 15, 1993, 150 (4) 1325-1337;
H Ikematsu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Harindranath
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Ueki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A L Notkins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Casali
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The construction of mAb-producing cell lines has been instrumental in dissecting the fine specificities and genetic makeup of murine antibodies to exogenous and self Ag. The analysis of the genetic composition of human antibody responses has been hampered by the difficulty in generating human mAb of predetermined class and specificity. Using B lymphocytes from three healthy subjects vaccinated with inactivated rabies virus vaccine, we generated nine human mAb binding to rabies virus and analyzed the genes encoding their VH regions. Six mAb (five IgG1 and one IgA1) were monoreactive and displayed high affinities for rabies virus Ag. The remaining three mAb (IgM) were polyreactive and displayed lower affinities for rabies virus Ag. Seven mAb (3 IgG1, the IgA1, and the three IgM) utilized VH gene segments of the VHIII family. The remaining two IgG1 mAb utilized gene segments of the VHI and VHIV families. Of the seven expressed VHIII family genes, three were similar to the germline VH26c gene, two to the germline 22-2B gene, one to the germline H11 gene, and one to the germline 8-1B gene. The expressed VHI and VHIV genes displayed sequences similar to those of the germline hv1263 and V71-4 genes, respectively. The VH genes of all but one mAb (mAb55) resembled those that are predominantly expressed by C mu + clones in human fetal liver libraries. When compared with known germline sequences, the VH genes of the rabies virus-binding mAb displayed variable numbers of nucleotide differences. That such differences resulted from a process of somatic hypermutation was formally demonstrated (by analyzing DNA from polymorphonuclear neutrophil of the same subject whose B lymphocytes were used for the mAb generation) in the case of the VH gene of the high affinity (anti-rabies virus glycoprotein) IgG1 mAb57 that has been shown to efficiently neutralize the virus in vitro and in vivo. The distribution, mainly within the complementarity determining regions, and the high replacement-to-silent ratio of the mutations, were consistent with the hypothesis that the mAb57-producing cell clone underwent a process of Ag-driven affinity maturation through clonal selection. The D gene segments of the rabies virus-selected mAb were heterogeneous and, in most cases, flanked by significant N segment additions. The JH segment utilization was unbalanced and reminiscent of those of the adult and fetus. Four mAb utilized JH4, two JH6, two JH3, and one JH5; no mAb utilized JH1 or JH2 genes.(ABSTRACT TRUNCATED AT 400 WORDS)

  • Copyright © 1993 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 150, Issue 4
15 Feb 1993
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Clonal analysis of a human antibody response. II. Sequences of the VH genes of human IgM, IgG, and IgA to rabies virus reveal preferential utilization of VHIII segments and somatic hypermutation.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Clonal analysis of a human antibody response. II. Sequences of the VH genes of human IgM, IgG, and IgA to rabies virus reveal preferential utilization of VHIII segments and somatic hypermutation.
H Ikematsu, N Harindranath, Y Ueki, A L Notkins, P Casali
The Journal of Immunology February 15, 1993, 150 (4) 1325-1337;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Clonal analysis of a human antibody response. II. Sequences of the VH genes of human IgM, IgG, and IgA to rabies virus reveal preferential utilization of VHIII segments and somatic hypermutation.
H Ikematsu, N Harindranath, Y Ueki, A L Notkins, P Casali
The Journal of Immunology February 15, 1993, 150 (4) 1325-1337;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606