Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors.

D K Perry, W L Hand, D E Edmondson and J D Lambeth
J Immunol October 15, 1992, 149 (8) 2749-2758;
D K Perry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W L Hand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D E Edmondson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J D Lambeth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

An agonist-activated phospholipase D/phosphatidic acid phosphohydrolase (PAH) pathway was recently demonstrated in human neutrophils, and evidence suggests that phosphatidic acid (PA) and/or diradylglycerol (DG) generated from this pathway participates in activation of the O2(-)-generating respiratory burst. We have used a series of cationic amphiphilic compounds (sphingosine, propranolol, chlorpromazine, and desipramine) and antibiotics (clindamycin, trimethoprim, and roxithromycin) all of which inhibit the respiratory burst, to investigate the role of the phospholipase D/PAH pathway in neutrophil activation. The phosphatidylcholine (PC) pool in intact cells was first labeled using [3H]-1-O-alkyl-lysoPC; released [3H]-PA and [3H]-DG were then quantified after the addition of either chemo-attractant or PMA. Using either agonist, all compounds showed a dose-dependent inhibition of [3H]-DG generation which correlated with inhibition of O2- generation, but compounds failed to inhibit directly the NADPH oxidase in a cell-free system. For either activator, a plot of the ID50 values for O2- generation vs those for DG generation was linear over four orders of magnitude. In many cases, inhibition of [3H]-DG generation corresponded to an increase in [3H]-PA, implicating PAH as the locus of inhibition. Superoxide generation was inhibited under conditions where PA was either elevated or minimally affected. Neither O2- release nor DG generation showed any selectivity for stereoisomers of propranolol, suggesting that this inhibition does not act via a specific binding site on PAH. No evidence was obtained for an effect of the inhibitors on PA mobility as monitored by electron spin resonance studies of spin-labeled PA in a model membrane system. Data are consistent with an effect of the inhibitors at the level of the interaction of PAH with the membrane and/or its substrate. These data imply that DG produced via the phospholipase D/PAH pathway functions in the activation or maintenance of the respiratory burst.

  • Copyright © 1992 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 149, Issue 8
15 Oct 1992
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors.
D K Perry, W L Hand, D E Edmondson, J D Lambeth
The Journal of Immunology October 15, 1992, 149 (8) 2749-2758;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors.
D K Perry, W L Hand, D E Edmondson, J D Lambeth
The Journal of Immunology October 15, 1992, 149 (8) 2749-2758;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606