Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Unassembled HLA-DR beta monomers are degraded rapidly by a nonlysosomal mechanism.

T Cotner
J Immunol April 1, 1992, 148 (7) 2163-2168;
T Cotner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We previously observed that in a mutant B lymphoblastoid cell line which has a homozygous HLA-DR alpha deletion, DR beta-chains appeared to be unstable. In the present study, we have studied the pathway that leads to degradation of unassembled DR beta-chains. Unassembled DR beta-chains are degraded rapidly in the DR alpha deletion mutant cells, compared with the assembled DR heterodimers present in non-mutant cells. Accelerated DR beta turnover in 9.22.3 cells is specific; class I molecules in these DR alpha-deficient cells turned over slowly. DR beta-chains assemble with Ii in the DR alpha deficient cell line, but this did not protect DR beta-chains from degradation. The maturation of unassembled beta-chains is arrested before their reaching the medial Golgi compartment, and this degradation proceeds by a nonlysosomal, nonendosomal pathway. Degradation of DR beta-chains is blocked when cells are cultured at 16 degrees C, a temperature known to prevent vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus. Degradation is also inhibited by carbonyl cyanide m-chlorophenylhydrazone, a drug that is also known to inhibit protein transport from the ER. The results, taken together, suggest that degradation of unassembled DR beta-chains occurs by a nonlysosomal, nonendosomal pathway which involves transport of DR beta-chains out of the ER.

  • Copyright © 1992 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 148, Issue 7
1 Apr 1992
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Unassembled HLA-DR beta monomers are degraded rapidly by a nonlysosomal mechanism.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Unassembled HLA-DR beta monomers are degraded rapidly by a nonlysosomal mechanism.
T Cotner
The Journal of Immunology April 1, 1992, 148 (7) 2163-2168;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Unassembled HLA-DR beta monomers are degraded rapidly by a nonlysosomal mechanism.
T Cotner
The Journal of Immunology April 1, 1992, 148 (7) 2163-2168;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606