Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
      • Neuroimmunology: To Sense and Protect
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine.

S Sozzani, W Luini, M Molino, P Jílek, B Bottazzi, C Cerletti, K Matsushima and A Mantovani
J Immunol October 1, 1991, 147 (7) 2215-2221;
S Sozzani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Luini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Molino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Jílek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Bottazzi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Cerletti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Matsushima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Mantovani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Recombinant monocyte-chemotactic and activating factor (rMCAF; alternative acronyms MCP-1, TDCF, human JE) induced migration of human monocytes across polycarbonate or nitrocellulose filters. Maximal induction of migration was observed at a concentration of 10 ng/ml (10(-9) M). Checkerboard analysis revealed that rMCAF elicited true gradient-dependent chemotactic migration, although a gradient independent chemokinetic effect was observed at low concentrations (1-5 ng/ml). rMCAF caused a rapid (less than 5 s) and transient (approximately 1.5 min) increase of free cytosolic Ca2+ ions, as assessed by the fura-2 probe. No Ca2+ increase was detected in neutrophils or lymphocytes stimulated by rMCAF. Studies conducted in the absence of extracellular Ca2+ or in the presence of Ni2+ (an inhibitor of Ca2+ influx) suggested that the increase of intracellular Ca2+ induced by rMCAF is dependent on the influx of extracellular Ca2+ through plasma membrane channels. Bordetella pertussis toxin inhibited the intracellular Ca2+ elevation and chemotaxis caused by rMCAF. The possible involvement of Ca(2+)-dependent protein kinases in rMCAF signaling pathway(s) was explored using inhibitors. Inhibitors of GMP-dependent kinase and myosin L chain kinase had no effect on rMCAF-induced monocyte migration. In contrast, protein kinase C/cAMP-dependent kinase inhibitors (such as, C-I, H-7, HA-1004, KT5720, and Staurosporine) markedly decreased rMCAF induced chemotaxis suggesting the involvement of a serine/threonine protein kinase, possibly protein kinase C, in rMCAF signaling pathway.

  • Copyright © 1991 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 147, Issue 7
1 Oct 1991
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine.
S Sozzani, W Luini, M Molino, P Jílek, B Bottazzi, C Cerletti, K Matsushima, A Mantovani
The Journal of Immunology October 1, 1991, 147 (7) 2215-2221;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine.
S Sozzani, W Luini, M Molino, P Jílek, B Bottazzi, C Cerletti, K Matsushima, A Mantovani
The Journal of Immunology October 1, 1991, 147 (7) 2215-2221;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • Public Access
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2021 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606